Due to the recent advancements in the Internet of Things (IoT) and Edge-Fog-Cloud Computing technologies, the Smart Public Safety (SPS) system has become a more realistic solution for seamless public safety services that are enabled by integrating machine learning (ML) into heterogeneous edge computing networks. While SPS facilitates convenient exchanges of surveillance data streams among device owners and third-party applications, the existing monolithic service-oriented architecture (SOA) is unable to provide scalable and extensible services in a large-scale heterogeneous network environment. Moreover, traditional security solutions rely on a centralized trusted third-party authority, which not only can be a performance bottleneck or the single point of failure, but it also incurs privacy concerns on improperly use of private information. Inspired by blockchain and microservices technologies, this paper proposed a BLockchain-ENabled Decentralized Smart Public Safety (BlendSPS) system. Leveraging the hybrid blockchain fabric, a microservices based security mechanism is implemented to enable decentralized security architecture, and it supports immutability, auditability, and traceability for secure data sharing and operations among participants of the SPS system. An extensive experimental study verified the feasibility of the proposed BlendSPS that possesses security and privacy proprieties with limited overhead on IoT based edge networks.
With a myriad of edge cameras deployed in urban and suburban areas, many people are seriously concerned about the constant invasion of their privacy. There is a mounting pressure from the public to make the cameras privacy-conscious. This paper proposes a Privacy-preserving Surveillance as an Edge service (PriSE) method with a hybrid architecture comprising a lightweight foreground object scanner and a video protection scheme that operates on edge cameras and fog/cloud-based models to detect privacy attributes like windows, faces, and perpetrators. The Reversible Chaotic Masking (ReCAM) scheme is designed to ensure an end-to-end privacy while the simplified foreground-object detector helps reduce resource consumption by discarding frames containing only background-objects. A robust window-object detector was developed to prevent peeping via windows; whereas human faces are detected by using a multi-tasked cascaded convolutional neural network (MTCNN) to ensure de-identification. The extensive experimental studies and comparative analysis show that the PriSE scheme (i) can efficiently detect foreground objects, and scramble those frames that contain foreground objects at the edge cameras, and (ii) detect and denature window and face objects, and identify perpetrators at a fog/cloud server to prevent unauthorized viewing via windows, to ensure anonymity of individuals, and to deter criminal activities, respectively.
Witnessing the increasingly pervasive deployment of security video surveillance systems(VSS), more and more individuals have become concerned with the issues of privacy violations. While the majority of the public have a favorable view of surveillance in terms of crime deterrence, individuals do not accept the invasive monitoring of their private life. To date, however, there is not a lightweight and secure privacypreserving solution for video surveillance systems. The recent success of blockchain (BC) technologies and their applications in the Internet of Things (IoT) shed a light on this challenging issue. In this paper, we propose a Lightweight, Blockchain-based Privacy protection (Lib-Pri) scheme for surveillance cameras at the edge. It enables the VSS to perform surveillance without compromising the privacy of people captured in the videos. The Lib-Pri system transforms the deployed VSS into a system that functions as a federated blockchain network capable of carrying out integrity checking, blurring keys management, feature sharing, and video access sanctioning. The policy-based enforcement of privacy measures is carried out at the edge devices for real-time video analytics without cluttering the network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.