SUMMARY
K-Ras is targeted to the plasma membrane by a C-terminal membrane anchor that comprises a farnesyl-cysteine-methyl-ester and a polybasic domain. We used quantitative spatial imaging and atomistic molecular dynamics simulations to examine molecular details of K-Ras plasma membrane binding. We found that the K-Ras anchor binds selected plasma membrane anionic lipids with defined head groups and lipid side chains. The precise amino acid sequence and prenyl group define a combinatorial code for lipid binding that extends beyond simple electrostatics; within this code lysine and arginine residues are non-equivalent and prenyl chain length modifies nascent polybasic domain lipid preferences. The code is realized by distinct dynamic tertiary structures of the anchor on the plasma membrane that govern amino acid side-chain-lipid interactions. An important consequence of this specificity is the ability of such anchors when aggregated to sort subsets of phospholipids into nanoclusters with defined lipid compositions that determine K-Ras signaling output.
Eukaryotic plasma membranes are compartmentalized into functional lateral domains, including lipid-driven membrane rafts. Rafts are involved in most plasma membrane functions by selective recruitment and retention of specific proteins. However, the structural determinants of transmembrane protein partitioning to raft domains are not fully understood. Hypothesizing that protein transmembrane domains (TMDs) determine raft association, here we directly quantify raft affinity for dozens of TMDs. We identify three physical features that independently affect raft partitioning, namely TMD surface area, length, and palmitoylation. We rationalize these findings into a mechanistic, physical model that predicts raft affinity from the protein sequence. Application of these concepts to the human proteome reveals that plasma membrane proteins have higher raft affinity than those of intracellular membranes, consistent with raft-mediated plasma membrane sorting. Overall, our experimental observations and physical model establish general rules for raft partitioning of TMDs and support the central role of rafts in membrane traffic.
Ras proteins regulate signal transduction processes that control cell growth and proliferation. Their disregulation is a common cause of human tumors. Atomic level structural and dynamical information in a membrane environment is crucial for understanding signaling specificity among Ras isoforms and for the design of selective anti-cancer agents. Here, the structure of the full-length H-Ras protein in complex with a 1,2-dimyristoylglycero-3-phosphocholine (DMPC) bilayer obtained from modeling and all-atom explicit solvent molecular dynamics simulations, as well as experimental validation of the main results, are presented. We find that, in addition to the lipid anchor, H-Ras membrane binding involves direct interaction of residues in the catalytic domain with DMPC phosphates. Two modes of binding (possibly modulated by GTP/GDP exchange) differing in the orientation and bilayer contact of the soluble domain as well as in the participation of the flexible linker in membrane binding are proposed. These results are supported by our initial in vivo experiments. The overall structures of the protein and the bilayer remain similar to those of the isolated components, with few localized structural and dynamical changes. The implications of the results to membrane lateral segregation and other aspects of Ras signaling are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.