In this paper we developed a stochastic model of measles transmission dynamics with double dose vaccination. The total population in this model was sub-divided in to five compartments, namely Susceptible , Infected Vaccinated first dose Vaccinated second dose and Recovered First the model was developed by deterministic approach and then transformed into stochastic one, which is known to play a significant role by providing additional degree of realism compared to the deterministic approach. The analysis of the model was done in both approaches. The qualitative behavior of the model, like conditions for positivity of solutions, invariant region of the solution, the existence of equilibrium points of the model and their stability, and also sensitivity analysis of the model were analyzed. We showed that in both deterministic and stochastic cases if the basic reproduction number is less than 1 or greater than 1 the disease free equilibrium point is stable or unstable respectively, so that the disease dies out or persists within the population. Numerical simulations were carried out using MATLAB to support our analytical solutions. These simulations show that how double dose vaccination affect the dynamics of human population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.