Background
Water erosion, upland degradation and deforestation are key environmental problems in the Meki river watershed. The study assessed the land use land cover change (LULCC) for 30 years and it examined the contribution of indigenous Enset-based land use system (EBLUS) to reduce soil erosion and prevent water bodies including Lake Ziway from sedimentation which was not considered in the former studies. GPS based data collected and satellite based LULC analysis using ERDAS Imagine 2014 performed to investigate existing farm management practices and land cover respectively. HEC-GEOHMS, Geo-statistical interpolation and RUSLE were applied to model watershed characteristics, spatial climate parameters and soil loss respectively.
Result
Meki river watershed (2110.4 km2 of area) is dominantly covered by cultivated LUS (41.5%), EBLUS (10.65%), Bush and Chat LUS (25.6%), Forest and plantations LUS (14.14%), built-up (7.4%) and water bodies (0.75%). Soil loss is increasing from 1987 to 2017 and a larger part of the watershed suffers a moderately severe to very severe risk (18 t ha−1 year−1 to > 80 t ha−1 year−1) in all sub-watersheds irrespective of the land use systems which shows the watershed is facing sever degradation problem. The mean soil loss of 30.5 t ha−1 year−13 and 31.905 t ha−1 year−1 are verified from Enset growing zones and non-Enset growing zones of the watershed respectively.
Conclusion
EBLUS saves significant amount of soil despite the steepness of the slopes of the Enset growing zones of the watershed. Hence, expansion of EBLUS can contribute in sustaining water bodies, including Lake Ziway by reducing soil loss rate and sedimentation problem for the ecological sustainability of the watershed. Therefore, separate land use policy and awareness creation are mandatory for such EBLUS expansion, sustainable watershed management interventions and conservation of the natural environment in the watershed based on its suitability and severity of erosion risk mapping.
Background Water erosion, upland degradation and deforestation are key environmental problems in the Meki river watershed. The study assessed the land use land cover change (LULCC) for 30 years and it examined the contribution of indigenous Enset-Based land use system (EBLUS) to reduce soil erosion and prevent water bodies including Lake Ziway from sedimentation which was not considered in the former studies. GPS based data collected and satellite based LULC analysis using ERDAS Imagine 2014 performed to investigate existing farm management practices and land cover respectively. HEC-GEOHMS, Geo-statistical interpolation and RUSLE were applied to model watershed characteristics, spatial climate parameters and soil loss respectively. Result Meki river watershed (2110.4sq.km of area) is dominantly covered by cultivated LUS (41.5%), EBLUS (10.65%), Bush and Chat LUS (25.6%), Forest and plantations LUS (14.14%), built-up (7.4%) and water bodies (0.75%). Soil loss is increasing from 1987 to 2017 and a larger part of the watershed suffers a moderately severe to very severe risk (18 t ha-1yr-1 to >80 t ha-1yr-1) in all sub-watersheds irrespective of the land use systems which shows the watershed is facing sever degradation problem. The mean soil loss of 30.5 t ha-1yr-1 and 31.905 t ha-1yr-1 are verified from Enset growing zones and non-Enset growing zones of the watershed respectively. Conclusion EBLUS saves significant amount of soil despite the steepness of the slopes of the Enset growing zones of the watershed. Hence, expansion of EBLUS can contribute in sustaining water bodies, including Lake Ziway by reducing soil loss rate and sedimentation problem for the ecological sustainability of the watershed. Therefore, separate land use policy and awareness creation are mandatory for such EBLUS expansion, sustainable watershed management interventions and conservation of the natural environment in the watershed based on its suitability and severity of erosion risk mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.