Non-orthogonal multiple access (NOMA) has attracted both academic and industrial interest since it has been considered as one of the promising 5G technologies in order to increase connectivity and spectral efficiency. In this paper, we focus on a downlink multicarrier (MC) NOMA network, where a single base station serves a set of users through multiple subchannels. The goal is to jointly optimize energy efficiency (EE) and fairness among users with respect to the subcarrier and power allocation parameters. To achieve this with acceptable complexity, a novel greedy subcarrier assignment scheme based on the worst-user first principle is proposed. Due to the fractional form of the EE expression and the existence of interference, the power allocation problem is non-convex and NP-hard. To this end, we first transform this into an equivalent subtractive form, which is then solved by using fractional programming with sequential optimization of the inter/intra-subchannel power allocation vectors. Simulation results reveal the effectiveness of the proposed scheme in terms of EE and fairness among users compared to baseline schemes. Finally, the proposed algorithms are of fast convergence, low complexity, and insensitive to the initial values.
Abstract-Future 5G networks will rely on the coordinated allocation of compute, storage, and networking resources in order to meet the functional requirements of 5G services as well as guaranteeing efficient usage of the network infrastructure. However, the 5G service provisioning paradigm will also require a unified infrastructure service market that integrates multiple operators and technologies. The 5G Exchange (5GEx) project, building heavily on the Software-Defined Network (SDN) and the Network Function Virtualization (NFV) functionalities, tries to overcome this market and technology fragmentation by designing, implementing, and testing a multi-domain orchestrator (MdO) prototype for fast and automated Network Service (NS) provisioning over multiple-technologies and spanning across multiple operators. This paper presents a first implementation of the 5GEx MdO prototype obtained by extending existing open source software tools at the disposal of the 5GEx partners. The main functions of the 5GEx MdO prototype are showcased by demonstrating how it is possible to create and deploy NSs in the context of a Slice as a Service (SlaaS) use-case, based on a multi-operator scenario. The 5GEx MdO prototype performance is experimentally evaluated running validation tests within the 5GEx sandbox. The overall time required for the NS deployment has been evaluated considering NSs deployed across two operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.