Time-fractional nonlinear partial differential equations (TFNPDEs) with proportional delay are commonly used for modeling real-world phenomena like earthquake, volcanic eruption, and brain tumor dynamics. These problems are quite challenging, and the transcendental nature of the delay makes them even more difficult. Hence, the development of efficient numerical methods is open for research. In this paper, we use the concepts of Laplace-like transform and variational theory to develop a new numerical method for solving TFNPDEs with proportional delay. The stability and convergence of the method are analyzed in the Banach sense. The efficiency of the proposed method is demonstrated by solving some test problems. The numerical results show that the proposed method performs much better than some recently developed methods and enables us to obtain more accurate solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.