Recent adversarial attacks with real world applications are capable of deceiving deep neural networks (DNN), which often appear as printed stickers applied to objects in physical world. Though achieving high success rate in lab tests and limited field tests, such attacks have not been tested on multiple DNN architectures with a standard setup to unveil the common robustness and weakness points of both the DNNs and the attacks. Furthermore, realistic looking stickers applied by normal people as acts of vandalism are not studied to discover their potential risks as well the risk of optimizing the location of such realistic stickers to achieve the maximum performance drop. In this paper, (a) we study the case of realistic looking sticker application effects on traffic sign detectors performance; (b) we use traffic sign image classification as our use case and train and attack 11 of the modern architectures for our analysis; (c) by considering different factors like brightness, blurriness and contrast of the train images in our sticker application procedure, we show that simple image processing techniques can help realistic looking stickers fit into their background to mimic real world tests; (d) by performing structured synthetic and real-world evaluations, we study the difference of various traffic sign classes in terms of their crucial distinctive features among the tested DNNs.
As global trends are shifting towards data-driven industries, the demand for automated algorithms that can convert digital images of scanned documents into machine readable information is rapidly growing. Besides the opportunity of data digitization for the application of data analytic tools, there is also a massive improvement towards automation of processes, which previously would require manual inspection of the documents. Although the introduction of optical character recognition (OCR) technologies mostly solved the task of converting human-readable characters from images into machinereadable characters, the task of extracting table semantics has been less focused on over the years. The recognition of tables consists of two main tasks, namely table detection and table structure recognition. Most prior work on this problem focuses on either task without offering an end-to-end solution or paying attention to real application conditions like rotated images or noise artefacts inside the document image. Recent work shows a clear trend towards deep learning approaches coupled with the use of transfer learning for the task of table structure recognition due to the lack of sufficiently large datasets. In this paper we present a multistage pipeline named Multi-Type-TD-TSR, which offers an end-to-end solution for the problem of table recognition. It utilizes state-of-the-art deep learning models for table detection and differentiates between 3 different types of tables based on the tables' borders. For the table structure recognition we use a deterministic non-data driven algorithm, which works on all table types. We additionally present two algorithms. One for unbordered tables and one for bordered tables, which are the base of the used table structure recognition algorithm. We evaluate Multi-Type-TD-TSR on the ICDAR 2019 table structure recognition dataset [3] and achieve a new state-of-the-art. The full source code is available on https:// github.com/ Psarpei/ Multi-Type-TD-TSR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.