We present an algorithm for processing of X-ray microtomographic (micro-CT) images that allows automatic selection of a sub-volume having the best visual quality for further mathematical simulation, for example, flow simulation. Frequently, an investigated sample occupies only a part of a volumetric image or the sample can be into a holder; a part of the image can be cropped. For each 2D slice across the Z-axis of an image, the proposed method locates a region corresponding to the sample. We explored applications of several existing blind quality measures for an estimation of the visual quality of a micro-CT image slice. Some of these metrics can be applied to ranking the image regions according to their quality. Our method searches for a cubic area located inside regions belonging to the sample and providing the maximal sum of the quality measures of slices crossing the cube across the Z-axis. The proposed technique was tested on synthetic and real micro-CT images of rocks.
In the paper, we propose an approach for selection a correction parameter for images damaged by backlighting. We consider the photos containing underexposed areas due to backlit conditions. Such areas are dark and have poorly discernible details. The correction parameter controls the level of amplification of local contrast in shadow tones. Besides, the correction parameter can be considered as a quality estimation factor for such photos. For an automatic selection of the correction parameter, we apply regression by supervised machine learning. We propose new features calculated from the co-occurrence matrix for the training of the regression model. We compare the performance of the following techniques: the least square method, support vector machine, random forest, CART, random forest, two shallow neural networks as well as blending and staking of several models. We apply two-stage approach for the collection of a big dataset for training: initial model is trained on a manually labeled dataset containing about two hundred of photos, after that we use the initial model for searching for photos damaged by backlit in social networks having public API. Such approach allowed to collect about 1000 photos in conjunction with their preliminary quality assessments that were corrected by experts if it was necessary. In addition, we investigate an application of several well-known blind quality metrics for the estimation of photos affected by backlit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.