Rationale Responsiveness to acute psychostimulant administration varies across ontogeny. Objective The purpose of the present study was to determine if age-dependent changes in D2High receptors may be responsible for the ontogeny of cocaine sensitivity in preweanling, adolescent, and adult rats. Methods [3H]-Domperidone/dopamine competition assays were used to determine ontogenetic changes in the proportion of D2High receptors in male and female preweanling [postnatal day (PD) 5, 10, 15, and 20], adolescent (PD 40), and adult rats (PD 80). In the behavioral experiment, responsiveness to cocaine (2.5, 5, 10, or 20 mg/kg) was assessed on PD 20, PD 40, and PD 80 for 60 min. Male and female rats were habituated to the apparatus on the two days prior to testing. Distance traveled data were presented both untransformed and as percent of saline controls. Results Male and female preweanling rats (PD 5–PD 20) had a significantly greater percentage of dorsal striatal D2High receptors than adolescent or adult rats. Likewise, preweanling rats (PD 20) were more sensitive to the behavioral effects of cocaine than the two older age groups. Adolescent and adult rats responded in a generally similar manner, however analysis of the untransformed locomotor activity data suggested that adolescent rats were hyporesponsive to 2.5 and 20 mg/kg cocaine when compared to adults. Conclusions Data from the present study are consistent with the hypothesis that ontogenetic changes in D2High receptors are responsible for age-dependent differences in psychostimulant sensitivity.
Docosahexaenoic acid complexed to albumin (DHA-Alb) is highly neuroprotective after temporary middle cerebral artery occlusion (MCAo), but whether a similar effect occurs in permanent MCAo is unknown. Male Sprague-Dawley rats (270–330 g) underwent permanent MCAo. Neurological function was evaluated on days 1, 2 and 3 after MCAo. We studied six groups: DHA (5 mg/kg), Alb (0.63 or 1.25 g/kg), DHA-Alb (5 mg/kg+0.63 g/kg or 5 mg/kg+1.25 g/kg) or saline. Treatment was administered i.v. at 3 h after onset of stroke (n = 7–10 per group). Ex vivo imaging of brains and histopathology were conducted on day 3. Saline- and Alb-treated rats developed severe neurological deficits but were not significantly different from one another. In contrast, rats treated with low and moderate doses of DHA-Alb showed improved neurological score compared to corresponding Alb groups on days 2 and 3. Total, cortical and subcortical lesion volumes computed from T2 weighted images were reduced following a moderate dose of DHA-Alb (1.25 g/kg) by 25%, 22%, 34%, respectively, compared to the Alb group. The total corrected, cortical and subcortical infarct volumes were reduced by low (by 36–40%) and moderate doses (by 34–42%) of DHA-Alb treatment compared to the Alb groups. In conclusion, DHA-Alb therapy is highly neuroprotective in permanent MCAo in rats. This treatment can provide the basis for future therapeutics for patients suffering from ischemic stroke.
The ontogenetic profile of psychostimulant-induced one-trial behavioral sensitization has not been determined. The purpose of this study was to systematically assess the ontogeny of methamphetamine- and cocaine-induced behavioral sensitization across the preweanling and adolescent periods. To this end, rats were injected with methamphetamine, cocaine, or saline in either an activity chamber or home cage during the preweanling (PD 12, PD 16, or PD 20), preadolescent (PD 24), or adolescent (PD 34) periods. One day later, rats were challenged with the same psychostimulant and locomotion was measured in an activity chamber. Results showed that methamphetamine produced one-trial locomotor sensitization on PD 13 and PD 17; whereas, cocaine-induced behavioral sensitization was only evident on PD 21. The sensitized responding of preweanling rats was not influenced by environmental context. Interestingly, preadolescent and adolescent rats did not exhibit locomotor sensitization. The latter result is generally consistent with past studies showing that rats from the middle and late adolescent periods do not exhibit cocaine-induced one-trial behavioral sensitization. The present results show that methamphetamine, as well as cocaine, can produce one-trial context-independent behavioral sensitization during early ontogeny, but sensitized responding is only apparent within a narrow developmental window.
Rationale Preweanling rats exhibit robust one-trial cocaine-induced behavioral sensitization; however, it is uncertain whether other psychostimulants can also induce sensitization in young rats using the one-trial procedure. Objective The purpose of this study was to determine whether methamphetamine, methylphenidate, and D-amphetamine are capable of inducing one-trial locomotor sensitization in preweanling rats. Methods In a series of four experiments, rats were pretreated with cocaine (30 mg/kg), methamphetamine (2–12 mg/kg), methylphenidate (5–20 mg/kg), or amphetamine (5 mg/kg) before being placed in a novel activity chamber or the home cage on PD 19. Rats were then challenged with the same psychostimulant (20 mg/kg cocaine, 1–8 mg/kg methamphetamine, 2.5–7.5 mg/kg methylphenidate, or 1–2 mg/kg amphetamine) on PD 21, with distance traveled being measured for 180 min. In a separate experiment, rats were pretreated with methamphetamine on PD 16–19 and challenged with methamphetamine on PD 21. Results Only cocaine, but not various dose combinations of other psychostimulants, was able to produce one-trial behavioral sensitization in preweanling rats. Context-dependent locomotor sensitization was also evident if rats were pretreated with methamphetamine on PD 16–19 and tested on PD 21. Conclusions It is uncertain why only cocaine was able to induce one-trial locomotor sensitization in preweanling rats, but it is possible that: (a) the neural circuitry mediating sensitization differs according to psychostimulant, (b) cocaine is more readily associated with environmental contexts than other psychostimulants, or (c) affinity and pharmacokinetic factors may underlie cocaine’s ability to induce one-trial behavioral sensitization in preweanling rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.