Histone modifications play a key role in the epigenetic regulation of gene transcription in cancer cells. Histone acetylations are regulated by two classes of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDACs are increased in ovarian carcinomas and they are involved in carcinogenesis and resistance to chemotherapeutic agents. In our study we investigated anticancer effect of HDAC inhibitor sodium butyrate (NaBu) on cisplatin-sensitive and cisplatin-resistant ovarian cell lines A2780 and A2780cis. A2780 and A2780cis were treated with NaBu alone or in combination with cisplatin (CP). NaBu inhibited the growth of both cell lines and enhanced cytotoxic effect of CP. Exposure to NaBu for 24 h induced cell cycle arrest. The expressions of EMT-related genes and proteins were further investigated by qPCR and western blot analysis. Loss of E-cadherin has been shown to be crucial in ovarian cancer development. We found that NaBu dramatically induce expression of E-cadherin gene (CDH1) and protein levels in A2780 and A2780cis. We investigated correlation between transcription and methylation of CDH1gene. Methylation level analysis in 32 CpG sites in CDH1 gene (promoter/exon1 regions) was performed using bisulfite NGS (Next Generation Sequencing). We found that cisplatin-resistant cell line A2780cis cells differ from their cisplatin-sensitive counterparts in the CDH1 methylation. Methylation in A2780cis cells is elevated compared to A2780. However, NaBu-induced expression of CDH1 was not accompanied by CDH1 demethylation. NaBu treatment induced changes in expression of EMT-related genes and proteins. Interestingly E-cadherin zinc finger transcriptional repressor SNAIL1 was upregulated in both cell lines. Mesenchymal marker vimentin was downregulated. Matrix metalloproteases (MMPs) are necessary for pericellular proteolysis and facilitate migration and invasion of tumour cells. NaBu induced mRNA expression of MMPs, mild changes in activities of gelatinases MMP2 and MMP9 were detected. Our data demonstrate that NaBu sensitizes cisplatin-resistant ovarian cancer cells, re-established E-cadherin expression, but it was not able to reverse the EMT phenotype completely.
A soluble form of endoglin (sEng) released into the circulation was suggested to be a direct inducer of endothelial dysfunction, inflammation and contributed to the development of hypertension by interfering with TGF-β signaling in cardiovascular pathologies. In the present study, we assessed the hypothesis that high sEng level-induced hypertension via a possible sEng interference with TGF-β signaling pathways may result in inflammatory, structural or fibrotic changes in hearts of Sol-Eng+ mice (mice with high levels of soluble endoglin) fed either chow or high-fat diet. Female Sol-Eng+ mice and their age matched littermates with low plasma levels of sEng were fed either chow or high-fat diet (HFD). Heart samples were subsequently analyzed by histology, qRT-PCR and Western blot analysis. In this study, no differences in myocardial morphology/hypertrophy and possible fibrotic changes between Sol-Eng+ mice and control mice were detected on both chow and HFD. The presence of sEng did not significantly affect the expression of selected members of TGF-β signaling (membrane endoglin, TGFβRII, ALK-5, ALK-1, Id-1, PAI-1 and activated Smad proteins-pSmad 1,5 and pSmad 2,3), inflammation, heart remodeling (PDGFb, Col1A1) and endothelial dysfunction (VCAM-1, ICAM-1) in the hearts of Sol-Eng+ mice compared to control mice on both chow and high-fat diet. High levels of soluble endoglin did not affect microscopic structure (profibrotic and degenerative cardiomyocyte changes), and specific parts of TGF-β signaling, endothelial function and inflammation in the heart of Sol-Eng+ mice fed both chow diet or HFD. However, we cannot rule out a possibility that a long-term chronic exposure (9 months and more) to soluble endoglin alone or combined with other cardiovascular risk factors may contribute to alterations of heart function and structure in Sol-Eng+ mice, which is the topic in our lab in ongoing experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.