Background: Metabolic syndrome–associated osteoarthritis (MetS-OA) is a distinct osteoarthritis phenotype defined by the coexistence of MetS or its individual components. Despite the high prevalence of MetS-OA, its pathogenic mechanisms are unclear. The aim of this study was to determine the role of cellular senescence in the development of MetS-OA. Methods: Analysis of the human osteoarthritis initiative (OAI) dataset was conducted to investigate the MRI subchondral bone features of MetS-human OA participants. Joint phenotype and senescent cells were evaluated in two MetS-OA mouse models: high-fat diet (HFD)-challenged mice and STR/Ort mice. In addition, the molecular mechanisms by which preosteoclasts become senescent as well as how the senescent preosteoclasts impair subchondral bone microenvironment were characterized using in vitro preosteoclast culture system. Results: Humans and mice with MetS are more likely to develop osteoarthritis-related subchondral bone alterations than those without MetS. MetS-OA mice exhibited a rapid increase in joint subchondral bone plate and trabecular thickness before articular cartilage degeneration. Subchondral preosteoclasts undergo senescence at the pre- or early-osteoarthritis stage and acquire a unique secretome to stimulate osteoblast differentiation and inhibit osteoclast differentiation. Antagonizing preosteoclast senescence markedly mitigates pathological subchondral alterations and osteoarthritis progression in MetS-OA mice. At the molecular level, preosteoclast secretome activates COX2-PGE2, resulting in stimulated differentiation of osteoblast progenitors for subchondral bone formation. Administration of a selective COX2 inhibitor attenuated subchondral bone alteration and osteoarthritis progression in MetS-OA mice. Longitudinal analyses of the human Osteoarthritis Initiative (OAI) cohort dataset also revealed that COX2 inhibitor use, relative to non-selective nonsteroidal anti-inflammatory drug use, is associated with less progression of osteoarthritis and subchondral bone marrow lesion worsening in participants with MetS-OA. Conclusions: Our findings suggest a central role of a senescent preosteoclast secretome-COX2/PGE2 axis in the pathogenesis of MetS-OA, in which selective COX2 inhibitors may have disease-modifying potential. Funding: This work was supported by the National Institutes of Health grant R01AG068226 and R01AG072090 to M.W., R01AR079620 to S.D., and P01AG066603 to X.C.
Précis: Peripapillary vessel parameters from optical coherence tomography angiography (OCTA) 4.5×4.5 mm scans in nonglaucomatous and glaucomatous eyes showed high repeatability and reproducibility, with higher reliability for commercially developed OCTA parameters compared with custom OCTA parameters. Purpose:The purpose of this study was to assess intrasession repeatability versus intersession reproducibility of peripapillary vessel parameters from 4.5×4.5 mm OCTA scans in nonglaucomatous eyes and glaucomatous eyes. Materials and Methods:In a longitudinal study, peripapillary OCTA scans were quantified using research-oriented custom quantification software that calculated vessel area density (VAD) and flux and clinic-oriented commercially developed software (Cirrus 11.0) that calculated perfusion density (PD) and flux index (FI). Intrasession repeatability and intersession reproducibility were evaluated using within-eye coefficient of variation (CV W ) and intraclass correlation coefficient (ICC).Results: With 127 nonglaucomatous eyes, intrasession CV W for VAD, PD, flux, and FI were 1.900%, 1.174%, 2.787%, and 1.425%, respectively. The intersession CV W were 2.039%, 1.606%, 4.053%, and 2.798%, respectively. Intrasession ICC ranged from 0.903 to 0.956, and intersession ICC ranged from 0.850 to 0.896. Among 144 glaucomatous eyes, intrasession CV W for VAD, PD, flux, and FI were: 3.841%, 1.493%, 5.009%, and 2.432%, respectively. The intersession CV W were 4.991%, 2.155%, 6.360%, and 3.458%, respectively. Intrasession ICC ranged from 0.956 to 0.969, and intersession ICC ranged from 0.918 to 0.964.Conclusions: Among nonglaucomatous and glaucomatous eyes, the majority of peripapillary OCTA vessel parameters from 4.5×4.5 mm scans had greater intrasession repeatability than intersession reproducibility. There was a greater agreement for the commercially developed quantification parameters than for their custom quantification counterparts.
Background: Metabolic syndrome–associated osteoarthritis (MetS-OA) is a distinct osteoarthritis phenotype defined by the coexistence of MetS or its individual components. Despite the high prevalence of MetS-OA, its pathogenic mechanisms are unclear. The aim of this study was to determine the role of cellular senescence in the development of MetS-OA. Methods: Analysis of the human osteoarthritis initiative (OAI) dataset was conducted to investigate the MRI subchondral bone features of MetS-human OA participants. Joint phenotype and senescent cells were evaluated in two MetS-OA mouse models: high-fat diet (HFD)-challenged mice and STR/Ort mice. In addition, the molecular mechanisms by which preosteoclasts become senescent as well as how the senescent preosteoclasts impair subchondral bone microenvironment were characterized using in vitro preosteoclast culture system. Results: Humans and mice with MetS are more likely to develop osteoarthritis-related subchondral bone alterations than those without MetS. MetS-OA mice exhibited a rapid increase in joint subchondral bone plate and trabecular thickness before articular cartilage degeneration. Subchondral preosteoclasts undergo senescence at the pre- or early-osteoarthritis stage and acquire a unique secretome to stimulate osteoblast differentiation and inhibit osteoclast differentiation. Antagonizing preosteoclast senescence markedly mitigates pathological subchondral alterations and osteoarthritis progression in MetS-OA mice. At the molecular level, preosteoclast secretome activates COX2-PGE2, resulting in stimulated differentiation of osteoblast progenitors for subchondral bone formation. Administration of a selective COX2 inhibitor attenuated subchondral bone alteration and osteoarthritis progression in MetS-OA mice. Longitudinal analyses of the human Osteoarthritis Initiative (OAI) cohort dataset also revealed that COX2 inhibitor use, relative to non-selective nonsteroidal anti-inflammatory drug use, is associated with less progression of osteoarthritis and subchondral bone marrow lesion worsening in participants with MetS-OA. Conclusions: Our findings suggest a central role of a senescent preosteoclast secretome-COX2/PGE2 axis in the pathogenesis of MetS-OA, in which selective COX2 inhibitors may have disease-modifying potential. Funding: This work was supported by the National Institutes of Health grant R01AG068226 and R01AG072090 to M.W., R01AR079620 to S.D., and P01AG066603 to X.C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.