The experiment aims to test the specific way of producing concrete with recycled concrete aggregate (RCA). To reduce its negative impact on the concrete properties, two different ways of treatment of the RCA with geopolymer slurry were applied-coating during the mixing using the specific mixing approach and coating prior to the mixing of concrete. As control samples, a mixture prepared by natural aggregate only and a mixture with RCA that was prepared by standard mixing with no coating process were tested as well. The results of density, total water absorption, and compressive strength in periods of 28, 90, 180, and 365 days of curing are presented and evaluated. Both methods of coating of the RCA with geopolymer slurry allow for the preparation of concrete with properties comparable to those of normal concrete (prepared by standard mixing with natural aggregate); thus, it seems to be a promising way to enhance the rate of RCA application. The positive effect of coating is clearly visible after a longer period of curing (180 days). When comparing the methods of RCA coating, coating directly during the mixing yields somewhat better results; it is also positive from the technological point of view, since the process is simpler in practice.
Pervious concrete is considered to be an advanced pavement material in terms of the environmental benefits arising from its basic feature-high water-permeability. This paper presents the results of experimental work that is aimed at testing technically important properties of pervious concrete prepared with three different water-to-cement ratios. The following properties of pervious concrete were tested-compressive and splitting tensile strength, unit weight at dry conditions, void content, and permeability. The mix proportions were expected to have the same volume of cement paste, and, to obtain the same 20% void content for all of the samples. The results show that changes of water-to-cement ratio from 0.35 to 0.25 caused only slight differences in strength characteristics. Arising tendency was found in the case of compressive strength and a decreasing tendency in the case of splitting tensile strength. The hydraulic conductivity ranged from 10.2 mm/s to 7.5 mm/s. The values of both the unit weight and void content were also analysed to compare the theoretical (calculated) values and real experiment results. A fairly good agreement was reached in the case of mixtures with 0.35 and 0.30 water-to-cement ratios, while minor differences were found in the case of 0.25 ratio. Finally, a very tight correlation was found between void content, hydraulic conductivity, and compressive strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.