Glucocorticoids are widely used for therapy of hematologic malignancies. Unfortunately, chronic treatment with glucocorticoids commonly leads to adverse effects including skin and muscle atrophy and osteoporosis. We found recently that REDD1 (regulated in development and DNA damage 1) plays central role in steroid atrophy. Here, we tested whether REDD1 suppression makes glucocorticoid-based therapy of blood cancer safer. Unexpectedly, approximately 50% of top putative REDD1 inhibitors selected by bioinformatics screening of Library of Integrated Network-Based Cellular Signatures database (LINCS) were PI3K/Akt/ mTOR inhibitors. We selected Wortmannin, LY294002, and AZD8055 for our studies and showed that they blocked basal and glucocorticoid-induced REDD1 expression. Moreover, all PI3K/ mTOR/Akt inhibitors modified glucocorticoid receptor function shifting it toward therapeutically important transrepression. PI3K/Akt/mTOR inhibitors enhanced anti-lymphoma effects of Dexamethasone in vitro and in vivo, in lymphoma xenograft model. The therapeutic effects of PI3K inhibitorþDexamethasone combinations ranged from cooperative to synergistic, especially in case of LY294002 and Rapamycin, used as a previously characterized reference REDD1 inhibitor. We found that coadministration of LY294002 or Rapamycin with Dexamethasone protected skin against Dexamethasone-induced atrophy, and normalized RANKL/OPG ratio indicating a reduction of Dexamethasone-induced osteoporosis. Together, our results provide foundation for further development of safer and more effective glucocorticoid-based combination therapy of hematologic malignancies using PI3K/Akt/mTOR inhibitors.
Glucocorticoids (GCs) are stress hormones that play multiple roles in the regulation of cancer cell differentiation, apoptosis, and proliferation. Some types of cancers, such as hematological malignancies, can be effectively treated by GCs, whereas the responses of epithelial cancers to GC treatment vary, even within cancer subtypes. In particular, GCs are frequently used as supporting treatment of breast cancer (BC) to protect against chemotherapy side effects. In the therapy of nonaggressive luminal subtypes of BC, GCs can have auxiliary antitumor effects due to their cytotoxic actions on cancer cells. However, GCs can promote BC progression, colonization of distant metastatic sites, and metastasis. The effects of GCs on cell proliferation vary with BC subtype and its molecular profile and are realized via the activation of glucocorticoid receptor (GR), a well-known transcriptional factor involved in the regulation of the expression of multiple genes, cell-cell adhesion, and cell migration and polarity. This review focuses on the roles of GC signaling in the adhesion, migration, and metastasis of BC cells. We discuss the molecular mechanisms of GC actions that lead to BC metastasis and propose alternative pharmacological uses of GCs for BC treatment.
Introduction. Glucocorticoids are the important component of combined chemotherapy of blood cancer. Therapeutic effects of glucocorticoids is realized via activation of glucocorticoid receptor transrepression, the development of side effects is associated with transactivation. We demonstrated earlier that compound belonging the class of selective glucocorticoid receptor agonists, CpdA, selectively induced transrepression in blood cancer cells. CpdA represents a mixture of two enantiomers, which can differ in interaction with the receptor. Aim. The main aim of present study was to synthesize CpdA enantiomers and to evaluate their biological properties. Materials and methods. Synthesis was carried out based on Sharpless dihydroxylation; anti-tumor activity in vitro was evaluated by antiproliferative and pro-apoptotic effects. Ligand properties were estimated by PCR-analysis of glucocorticoid- and NF-kB-dependent genes expression. Results and conclusions. We demonstrated that CpdA enantiomers revealed anti-tumor activity in vitro and did not induce transactivation. Moreover, S-enantiomer of CpdA in the most tests demonstrated more pronounced activity and is more perspective molecule for future studies in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.