An accurate material representation of polymeric interlayers in laminated glass panes has proved fundamental for a reliable prediction of their response in both static and dynamic loading regimes. This issue is addressed in the present contribution by examining the time–temperature sensitivity of the shear stiffness of two widely used interlayers made of polyvinyl butyral (TROSIFOL BG R20) and ethylene-vinyl acetate (EVALAM 80-120). To that end, an experimental program has been executed to compare the applicability of two experimental techniques, (i) dynamic torsional tests and (ii) dynamic single-lap shear tests, in providing data needed in a subsequent calibration of a suitable material model. Herein, attention is limited to the identification of material parameters of the generalized Maxwell chain model through the combination of linear regression and the Nelder–Mead method. The choice of the viscoelastic material model has also been supported experimentally. The resulting model parameters confirmed a strong material variability of both interlayers with temperature and time. While higher initial shear stiffness was observed for the polyvinyl butyral interlayer in general, the ethylene-vinyl acetate interlayer exhibited a less pronounced decay of stiffness over time and a stiffer response in long-term loading.
This paper focuses on the modal analysis of laminated glass beams. In these multilayer elements, the stiff glass plates are connected by compliant interlayers with frequency/temperature-dependent behavior. The aim of our study is (i) to assess whether approximate techniques can accurately predict the behavior of laminated glass structures and (ii) to propose an easy tool for modal analysis based on the enhanced effective thickness concept by Galuppi and Royer-Carfagni.To this purpose, we consider four approaches to the solution of the related nonlinear eigenvalue problem: a complex-eigenvalue solver based on the Newton method, the modal strain energy method, and two effective thickness concepts. A comparative study of free vibrating laminated glass beams is performed considering different geometries of cross-sections, boundary conditions, and material parameters for interlayers under two ambient temperatures. The viscoelastic response of polymer foils is represented by the generalized Maxwell model.We show that the simplified approaches predict natural frequencies with an acceptable accuracy for most of the examples. However, there is a considerable scatter in predicted loss factors. The enhanced effective thickness approach adjusted for modal analysis leads to lower errors in both quantities compared to the other two simplified procedures, reducing the extreme error in loss factors to one half compared to the modal strain energy method or to one quarter compared to the original dynamic effective thickness method.
Laminated glass structures are formed by stiff layers of glass connected with a compliant plastic interlayer. Due to their slenderness and heterogeneity, they exhibit a complex mechanical response that is difficult to capture by single-layer models even in the elastic range. The purpose of this paper is to introduce an efficient and reliable finite element approach to the simulation of the immediate response of laminated glass beams. It proceeds from a refined plate theory due to Mau (1973), as we treat each layer independently and enforce the compatibility by the Lagrange multipliers. At the layer level, we adopt the finite-strain shear deformable formulation of Reissner (1972) and the numerical framework by Ibrahimbegovi\'{c} and Frey (1993). The resulting system is solved by the Newton method with consistent linearization. By comparing the model predictions against available experimental data, analytical methods and two-dimensional finite element simulations, we demonstrate that the proposed formulation is reliable and provides accuracy comparable to the detailed two-dimensional finite element analyzes. As such, it offers a convenient basis to incorporate more refined constitutive description of the interlayer.Comment: Moderate revisions; 17 pages, 6 figures, 8 table
Laminated glass elements, which consist of stiff elastic glass layers connected with a compliant viscoelastic polymer foil, exhibit geometrically non-linear and time/temperature-sensitive behavior. In computational modeling, the viscoelastic effects are often neglected or a detailed continuum formulation typically based on the volumetric-deviatoric elastic-viscoelastic split is used for the interlayer. Four layerwise beam theories are introduced in this paper, which differ in the non-linear beam formulation at the layer level (von Kármán/Reissner) and in constitutive assumptions for the interlayer (a viscoelastic solid with the time-independent bulk modulus/Poisson ratio). We perform detailed verification and validation studies at different temperatures and compare the accuracy of the selected formulation with simplified elastic solutions used in practice. We show that all the four formulations predict very similar responses. Therefore, our suggestion is to use the most straightforward formulation that combines the von Kármán model with the assumption of timeindependent Poisson ratio. The simplified elastic model mostly provides response in satisfactory agreement with full viscoelastic solutions. However, it can lead to unsafe or inaccurate predictions for rapid changes of loading. These findings provide a suitable basis for extensions towards laminated plates and glass layer fracture, owing to the modular format of layerwise theories.
This paper presents a simple Finite Element model aimed at efficient simulation of layered glass units. The approach is based on considering the independent kinematics of each layer, tied together via Lagrange multipliers. Validation and verification of the resulting model against independent data demonstrate its accuracy, showing its potential for generalization towards more complex problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.