Soybean is the world’s leading source of vegetable protein and demand for its seed continues to grow. Breeders have successfully increased soybean yield, but the genetic architecture of yield and key agronomic traits is poorly understood. We developed a 40-mating soybean nested association mapping (NAM) population of 5,600 inbred lines that were characterized by single nucleotide polymorphism (SNP) markers and six agronomic traits in field trials in 22 environments. Analysis of the yield, agronomic, and SNP data revealed 23 significant marker-trait associations for yield, 19 for maturity, 15 for plant height, 17 for plant lodging, and 29 for seed mass. A higher frequency of estimated positive yield alleles was evident from elite founder parents than from exotic founders, although unique desirable alleles from the exotic group were identified, demonstrating the value of expanding the genetic base of US soybean breeding.
Digital imagery can help to quantify seasonal changes in desirable crop phenotypes that can be treated as quantitative traits. Because limitations in precise and functional phenotyping restrain genetic improvement in the postgenomic era, imagery-based phenomics could become the next breakthrough to accelerate genetic gains in field crops. Whereas many phenomic studies focus on exploratory analysis of spectral data without obvious interpretative value, we used field images to directly measure soybean canopy development from phenological stage V2 to R5. Over 3 years, we collected imagery using ground and aerial platforms of a large and diverse nested association panel comprising 5555 lines. Genome-wide association analysis of canopy coverage across sampling dates detected a large quantitative trait locus (QTL) on soybean (Glycine max, L. Merr.) chromosome 19. This QTL provided an increase in yield of 47.3 kg ha−1. Variance component analysis indicated that a parameter, described as average canopy coverage, is a highly heritable trait (h2 = 0.77) with a promising genetic correlation with grain yield (0.87), enabling indirect selection of yield via canopy development parameters. Our findings indicate that fast canopy coverage is an early season trait that is inexpensive to measure and has great potential for application in breeding programs focused on yield improvement. We recommend using the average canopy coverage in multiple trait schemes, especially for the early stages of the breeding pipeline (including progeny rows and preliminary yield trials), in which the large number of field plots makes collection of grain yield data challenging.
Many economically important traits in plant breeding have low heritability or are difficult to measure. For these traits, genomic selection has attractive features and may boost genetic gains. Our goal was to evaluate alternative scenarios to implement genomic selection for yield components in soybean (Glycine max L. merr). We used a nested association panel with cross validation to evaluate the impacts of training population size, genotyping density, and prediction model on the accuracy of genomic prediction. Our results indicate that training population size was the factor most relevant to improvement in genome-wide prediction, with greatest improvement observed in training sets up to 2000 individuals. We discuss assumptions that influence the choice of the prediction model. Although alternative models had minor impacts on prediction accuracy, the most robust prediction model was the combination of reproducing kernel Hilbert space regression and BayesB. Higher genotyping density marginally improved accuracy. Our study finds that breeding programs seeking efficient genomic selection in soybeans would best allocate resources by investing in a representative training set.
Supplementary date are available at Bioinformatics online.
email baozhu.guo@usda.gov (B. G.); Tel 91-40-30713345; fax 91-40-30713074; email r.k.varshney@cgiar.org (R. K. V.)) † These authors contributed equally to this study. SummaryMultiparental genetic mapping populations such as nested-association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two NAM populations, NAM_Tifrunner and NAM_Florida-07, were used for dissecting genetic control of 100-pod weight (PW) and 100-seed weight (SW) in peanut. Two high-density SNP-based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and NAM_Florida-07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8 major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect QTLs for PW and SW, respectively, in NAM_Florida-07. Most of the QTLs associated with PW and SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association study (GWAS) analysis identified 19 and 28 highly significant SNP-trait associations (STAs) in NAM_Tifrunner and 11 and 17 STAs in NAM_Florida-07 for PW and SW, respectively. These significant STAs were co-localized, suggesting that PW and SW are co-regulated by several candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates the utility of NAM population for genetic dissection of complex traits and performing highresolution trait mapping in peanut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.