Low volume roads are widely used all over the world. To improve their quality a FEM computer simulation of their behavior is proposed. The input information about mechanical properties of individual materials is crucial for obtaining results as exact as possible. Among others, the mechanical properties are generally dependent on the state of stress and on humidity conditions. For this purpose the cyclic-load triaxial machine testing of cyclic-load performance of materials seems to be a promising test method. The test specimens can be prepared with diff erent amounts of water. Thus modulus of elasticity (Young modulus) of diff erent materials including recycled ones can be measured under the diff erent conditions of horizontal and vertical stresses and under the diff erent humidity conditions. Using the proposed testing procedure the modulus of elasticity of materials used in the newly built low volume road is obtained under the diff erent state of stress as well as humidity conditions set to standard, dry and fully saturated level. Also recycled materials which are able to replace the traditional materials in the pavement are tested. Obtained values of modulus of elasticity can be used in a FEM study of the newly built road.
Complex statistical and sensitivity analysis of principal stresses in concrete slabs of the real type of rigid pavement made from recycled materials is performed. The pavement is dominantly loaded by the temperature field acting on the upper and lower surface of concrete slabs. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangement of joints, and the entire model can be loaded by thermal load. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers including soil to the depth of about 3 m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The simulation technique Updated Latin Hypercube Sampling with 20 simulations is used for the reliability analysis. As results of statistical analysis, the estimates of basic statistics of the principal stresses σ1 and σ3 in 106 points on the upper and lower surface of slabs are obtained. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is used. As results of sensitivity analysis, the estimates of influence of random variability of individual input variables on the random variability of principal stresses σ1 and σ3 are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.