We report on the synthesis, structure, and self-assembly of single-wall subnanometer-diameter molybdenum disulfide tubes. The nanotubes are up to hundreds of micrometers long and display diverse self-assembly properties on different length scales, ranging from twisted bundles to regularly shaped "furry" forms. The bundles, which contain interstitial iodine, can be readily disassembled into individual molybdenum disulfide nanotubes. The synthesis was performed using a novel type of catalyzed transport reaction including C(60) as a growth promoter.
Due to their ease of fabrication and monodisperse, metallic nature, molybdenum-sulfur-iodine nanowires are an interesting alternative to carbon nanotubes for some applications. However very little is known about the solubility of these materials. In this work we have investigated the solubility of Mo(6)S(4.5)I(4.5) nanowire soot in a range of common solvents by performing sedimentation studies and microscopic and spectroscopic characterization. A sedimentation equation was derived showing that the concentration of any insoluble dispersed phase decreases exponentially with time. We find that in all solvents, Mo(6)S(4.5)I(4.5) nanowire soot contains three phases, two of which are insoluble with one stable phase. Microscopy and spectroscopy show that the first insoluble phase is associated mainly with spherical impurities and sediments rapidly out of solution resulting in purification. The second phase appears to consist of insoluble nanowire bundles and sediments more slowly, eventually leaving a stable dispersion of nanowire bundles. The stably dispersed bundles tend to be smaller than their insoluble counterparts. The best solvents studied were 2-propanol and dimethylformamide. Microscopy studies showed that, in the case of 2-propanol, sonication significantly reduced the bundle size relative to the unsonicated bulk. However, during sedimentation, large quantities of bundles were observed to reaggregate to form larger bundles which subsequently sedimented out of solution. In general, the sedimentation properties of the various phases did not vary significantly with concentration indicating that the insoluble nanowires are intrinsically insoluble. However, the diameter of the stably dispersed bundles decreased with concentration, until very small bundles consisting of only two or three nanowires were observed at concentrations below 0.003 mg/mL. In addition, stable composite dispersions were produced by mixing the nanowires with poly(vinylpyrrolidone) in 2-propanol opening the way for the formation of polymer/inorganic nanowire composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.