Reverse engineering is a technology that enables acceleration of data collecting for CAD, CAM, CAE systems, which also means shortening time of development, construction and components production. It is a transfer process of a physical component to a digital format. Generally, the technology of reverse engineering means a conversion of analogue data to digital data that are further processed. Every single industry branch rising their requirements on accuracy, dimension, quality, etc. Therefore, digitisation is applied in many production fields such as an automotive industry, aircraft or shipping, medicine, industrial design, design, etc. An article deals with an analysis of prototype models of gears in various stages of production. The realized inspection of a shape of prototype gears lied in uploading of a digitised referential CAD model (the gear after heat treatment and machining), subsequent setting up of digitised prototype gears (the gear after the machining, gear after heat treatment) in respect of this referential CAD model, a control of their dimensions and forming a colour map of deviations in chosen points.
Reverse engineering is a technology that enables acceleration of data acquisition for CAD, CAM, CAE systems and thus greatly reduces the time of development, design and production of components. In general, reverse engineering technology can be considered as the conversion of analog data to digital data, which is further processed. Individual industries are still increasing their demands for accuracy, size, quality, and so, therefore the use of digitization is found in many manufacturing areas such as the automotive, aerospace, shipping, medicine, industrial design, design, and so on. The paper deals with the analysis of the prototype component of the agitator gearbox in the form of a rough and chip-machined casting. The inspection of the shape of the gearbox consisted in reading the reference CAD model, establishing the digitized shape with respect to this reference model, checking the dimensions and creating a color map of the variations at selected points.
The unconventional technology of wire electrical discharge machining is a key engineering technology, designed primarily for machining of conventionally difficult machine materials. One of them is nickel alloys, which are majorly used in the aerospace and energy industries. The subject of research in this study was specifically the B1914 nickel-based superalloy, which was subjected to many analyses leading to an overall optimization of its machining using wire electrical discharge machining. In order to determine the effect of machine parameters setup (pulse off time, gap voltage, discharge current, pulse on time and wire feed) on cutting speed, topography, morphology, surface and subsurface layer quality, an extensive Box–Behnken design experiment consisting of 46 rounds was carried out. The analyses of the condition of the surface and subsurface layers were performed, including their chemical composition and changes caused by wire electrical discharge machining. It was found out that the factors like pulse off time, discharge current and pulse on time have the greatest effect on the cutting speed, although from the point of view of surface topography the parameter pulse off time is not significant. The remaining two parameters cause the cutting speed to act against the surface topography i.e. with the increasing cutting speed, the surface topography gets worse and vice versa.
The paper deals with the production of a prototype of aesthetic eye prosthesis using procedures related to reverse engineering technology. Due to the complexity of the prosthesis shape, the 3D model was obtained by scanning a hand-made acrylic prosthesis on the ATOS Compact Scan. Following the pattern of manual production, the model geometry underwent a modification in 3ds Max software, where a planar surface was created in the selected area for the iris texture. By this shape change, the core of the prosthesis prototype was created. Using the UV mapping, the texture of the iris was placed on the surface of the model, which was obtained by modifying a photo from a slit camera. The core of the prosthesis prototype was printed on a full-color 3D printer Stratasys J750, which uses additive PolyJet technology based on the curing of photopolymers. In order to form a biocompatible surface, the printed core was embedded in a clear acrylate in a mold made using an original acrylate prosthesis. The paper concludes with an overall evaluation of the achieved results with a description of problematic production steps and a proposal for a procedure for the future production of prostheses by 3D printing.
Wire electrical discharge machining (WEDM) technology is often used for the final machining of parts to the required surface quality without further finishing operations. At the same time, WEDM has a significant advantage over other machining technologies, and in the fact, it is possible to machine all materials, regardless of their hardness or toughness, it only needs to be at least electrically conductive. Aviation nickel superalloy Mar-M247, which is usually machined to the final form by parts using WEDM, was the subject of research in this study. In order to find the optimal setting of machine parameters (Pulse on time, Pulse off time, and Discharge current) for multicut machining, an extensive design of experiment was performed with a total of 54 circles, which optimized the cutting speed in the first and second cuts and the topography of the machined surface was taken into account in the third cut. Subsequently, an analysis of the topography and morphology of the machined samples was performed, including an analysis of the condition of the subsurface layer. The study also included the analysis of the lamella in a transmission electron microscope. It was found that with the maximization of the cutting speed in the third cut, the surface topography deteriorates proportionally, but it also leads to the complete removal of all cracks formed in the first cut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.