A metakaolinite-based geopolymer binder was prepared by using calcined claystone as the main raw material and potassium as the alkaline activator. Chamotte was added (65 vol%) to form geopolymer composites. Potassium hydroxide (KOH) was used to adjust the molar ratio of K/Al and the effect of K/Al on thermo-mechanical properties of geopolymer composites was investigated. This study aimed to analyze the effect of K/Al ratio and exposure to high temperatures (up to 1200 °C) on the compressive and flexural strengths, phase composition, pore size distribution, and thermal dilatation. With an increasing K/Al ratio, the crystallization temperature of the new phases (leucite and kalsilite) decreased. Increasing content of K/Al led to a decline in the onset temperature of the major shrinkage. The average pore size slightly increased with increasing K/Al ratio at laboratory temperature. Mechanical properties of geopolymer composites showed degradation with the increase of the K/Al ratio. The exception was the local maximum at a K/Al ratio equal to one. The results showed that the compressive strength decreases with increasing temperature. For thermal applications above 600 °C, it is better to use samples with lower K/Al ratios (0.55 or 0.70).
In this study, the effect of different types of aluminosilicates on the thermo-mechanical properties of metakaolinite-based geopolymer binders and composites was examined. The metakaolinite-based geopolymer binders and composites were produced from three different types of aluminosilicates (one metakaolin and two calcined claystones) and a potassium alkaline activator. Chamotte was added as a filler, amounting to 65% by volume, to create geopolymer composites. Geopolymer binders were characterized by X-ray diffraction, rotary rheometer and scanning electron microscopy. The mechanical properties, thermal dilatation and thermal conductivity were investigated on geopolymer composites with three different aluminosilicates before and after exposure to high temperatures (up to 1200 °C). The results showed that the geopolymer binders prepared from calcined claystones had a lower dynamic viscosity (787 and 588 mPa·s) compared to the geopolymer binders prepared from metakaolin (1090 mPa·s). Geopolymer composites based on metakaolin had lower shrinkage (0.6%) and higher refractoriness (1520 °C) than geopolymers from calcined claystones (0.9% and 1.5%, 1500 °C and 1470 °C). Geopolymers based on calcined kaolinitic claystones are a promising material with higher compressive (95.2 and 71.5 MPa) and flexural strength (12.4 and 10.7 MPa) compared to geopolymers based on metakaolin (compressive strength 57.7 MPa).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.