Thermal modification is the most important commercial modification procedure. Thermally modified (TM) wood has improved durability, but its performance does not meet expectations predominately under moist conditions. To reduce water uptake of TM wood, Norway spruce specimens were treated with suspensions of a natural wax by dipping impregnation (DipI) or by vacuum-pressure impregnation (VPI). Wax-treated specimens were subsequently TM at 185, 200, 215, and 230°C. Control specimens were heated up to 100°C only. Contact angle (CA), short-term and long-term water uptake, bending strength, and performance against wood decay fungi of the resulting material were determined. The results show that a combination of wax treatment and thermal modification have a synergistic effect that considerably improves hydrophobicity, reduces liquid water uptake, slows down water vapor uptake, and improves the resistance against fungal decay of the treated material.
The number of commercial products claiming self-cleaning properties is rising and testing of long-term activity and durability of such coatings needs to be addressed more. The time-dependent changes of different characteristics like haze, transparency, and color are essential for transparent glazing materials. Herein, we aimed to examine whether the laboratory results obtained on the Zr-modified-titania-silica (TiZr) self-cleaning materials would translate to larger-scale outdoor-exposed testing. TiZr thin films were deposited via spraying onto float glass window surfaces and exposed into three different environments for 20 months. For comparison, a commercially available active SGG BIOCLEANTM glass and standard float glass were simultaneously exposed in the same conditions. It was shown that the self-cleaning property of either a commercial product or TiZr-coated float glass was not considerably effective in real field test conditions, although the previous laboratory tests showed pronounced photocatalytic activity of TiZr thin films. The inclination angle; however, was shown to have a considerable effect on the self-cleaning ability of samples, as did the rain patterns during the testing period. On the other hand, the anti-fogging effect of our TiZr material was very well expressed in controlled laboratory conditions (measuring droplet formation time) as well as in the real outdoor environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.