The analysis indicates that a 14% change in the FIQ total score is clinically relevant, and results of these analyses should enhance the clinical utility of the FIQ in research and practice.
Patients with CLBP are characterized by greater comorbidity and economic burdens compared with those without CLBP. This economic burden can be attributed to greater prescribing of pain-related medications and increased health resource utilization.
Legionella pneumophila, the causative agent of Legionnaires' disease and related pneumonias, infects, replicates within and eventually kills human macrophages. A key feature of the intracellular life-style is the ability of the organism to replicate within a specialized phagosome which does not fuse with lysosomes or acidify. Avirulent mutants that are defective in intracellular multiplication and host-cell killing are unable to prevent phagosome-lysosome fusion. In a previous study, a 12 kb fragment of the L. pneumophila genome containing the icm locus (intracellular multiplication) was found to enable the mutant bacteria to prevent phagosome-lysosome fusion, to multiply intracellularly and to kill human macrophages. The complemented mutant also regained the ability to produce lethal pneumonia in guinea-pigs. In order to gain information about how L. pneumophila prevents phagosome-lysosome fusion and alters other intracellular events, we have studied the region containing the icm locus. This locus contains four genes, icmWXYZ, which appear to be transcribed from a single promoter to produce a 2.1-2.4 kb mRNA. The deduced amino acid sequences of the Icm proteins do not exhibit significant similarity to other proteins of known sequence, suggesting that they may carry out novel functions. The icmX gene encodes a product with an apparent signal sequence suggesting that it is a secreted protein. The icmWXYZ genes are located adjacent to and on the opposite strand from the dot gene, which is also required for intracellular multiplication and the ability of L. pneumophila to modify organelle traffic in human macrophages. Five L. pneumophila Icm mutants that had been generated with transposon Tn903dIIlacZ were found to have inserted the transposon within the icmX, icmY, icmZ and dot genes, confirming their role in the ability of the organism to multiply intracellularly.
Legionella pneumophila was mutagenized with Tn9O3dIIIacZ, and a collection of mutants was screened for defects in macrophage killing (Mak-). Of 4,564 independently derived mutants, 55 (1.2%) showed a reduced or complete lack in the ability to kill HL-60-derived human macrophages. Forty-nine of the Makmutants could be assigned to one of 16 DNA hybridization groups. Only one group (9 of the 10 members) could be complemented for macrophage killing by a DNA fragment containing icm and dot, two recently described L. pneumophila loci that are required for macrophage killing. Phenotypic analysis showed that none of the mutants were any more sensitive than the wild type to human serum, oxidants, iron chelators, or lipophilic reagents nor did they require additional nutrients for growth. The only obvious difference between the Makmutants and wild-type L. pneumophuila was that almost all of the Makmutants were resistant to NaCl. The effects of LiCl paralleled the effects of NaCl but were less pronounced. Resistance to salt and the inability to kill human macrophages are linked since both phenotypes appeared when Tn9O3dILIacZ mutations from two Mak-strains were transferred to wild-type backgrounds. However, salt sensitivity is not a requisite for killing macrophages since a group of Makmutants containing a plasmid that restored macrophage killing remained resistant to NaCl. Makmutants from groups I through IX associated with HL-60 cells similarly to wild-type L. pneumophila. However, like the intracellular-multiplication-defective (icm) mutant 25D, the Makmutants were unable to multiply within macrophages. Thus, the ability of L. pneumophila to kill macrophages seems to be determined by many genetic loci, almost all of which are associated with sensitivity to NaCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.