Recent studies are elucidating the interrelation between sleep, cranial perfusion, and cerebrospinal fluid (CSF) circulation. Head down tilt (HDT) as a simulation of microgravity reduces cranial perfusion. Therefore, our aim was to assess whether HDT is affecting sleep (clinicaltrials.gov; identifier NCT 02976168). 11 male subjects were recruited for a cross-over designed study. Each subject participated in two campaigns each comprising 3 days and 2 nights. Intervention started on the second campaign day and consisted of maintenance of horizontal position or −12° HDT for 21 h. Ultrasound measurements were performed before, at the beginning and the end of intervention. Polysomnographic measurements were assessed in the second night which was either spent in horizontal posture or at −12° HDT. Endpoints were sleep efficiency, sleep onset latency, number of sleep state changes and arousals, percentages of N3, REM, light sleep stages and subjective sleep parameters. N3 and REM sleep reduced by 25.6 and 19.1 min, respectively ( P = 0.002, g = -0.898; P = 0.035, g = -0.634) during −12° HDT. Light sleep (N1/2) increased by 33.0 min at −12° HDT ( P = 0.002, g = 1.078). On a scale from 1 to 9 subjective sleep quality deteriorated by 1.3 points during −12° HDT ( P = 0.047, g = -0.968). Ultrasonic measurement of the venous system showed a significant increase of the minimum ( P = 0.009, P < 0.001) and maximum ( P = 0.004, P = 0.002) cross-sectional area of the internal jugular vein at −12° HDT. The minimum cross-sectional area of the external jugular vein differed significantly between conditions over time ( P = 0.001) whereas frontal skin tissue thickness was not significantly different between conditions ( P = 0.077, P = 0.811). Data suggests venous congestion at −12° HDT. Since subjects felt comfortable with lying in −12° HDT under our experimental conditions, this posture only moderately deteriorates sleep. Obviously, the human body can almost compensate the several fold effects of gravity in HDT posture like an affected CSF circulation, airway obstruction, unusual patterns of propioception and effects on the cardiovascular system.
Five commercially available selective agar were evaluated regarding sensitivity and specificity to detect vancomycin-resistant Enterococcus (E.) faecium. Altogether 187 E. faecium strains were included, comprising 119 van-carrying strains (phenotypically vancomycin-resistant n = 105; phenotypically vancomycin-susceptible VVE-B n = 14) and 68 vancomycin-susceptible isolates. Limit of detection was calculated for each selective agar for pure cultures, stool suspensions and artificial rectal swabs. After 24-h incubation sensitivity ranged between 91.6% and 95.0%. It increased in 2 out of 5 agar after 48-h incubation. Specificity ranged between 94.1% and 100% and was highest after 24 h in 4 out of the 5 agar. Sensitivity of van-carrying phenotypically vancomycin-resistant strains was higher after 24 h (97.1–100%) and 48 h (99.1–100%) when compared to van-carrying strains that tested vancomycin-susceptible (50.0–57.1% after both incubation periods). Overall, chromID VRE, CHROMagar VRE and Brilliance VRE demonstrated the highest detection rates after 24 h. Detection rates of Chromatic VRE and VRESelect improved after 48 h. Adjustment of incubation time depending on the applied media may be advised. As detection of VVE-B was impeded with all selective agar, screening for vancomycin-resistant enterococci relying solely on selective media would not be recommended for critical clinical samples, but rather in combination with molecular methods to improve detection of these strains. Furthermore, stool samples were demonstrated to be superior to rectal swabs and should be favoured, if possible, in screening strategies.
The exact pathophysiology of the spaceflight-associated neuro-ocular syndrome (SANS) has so far not been completely elucidated. In this study we assessed the effect of acute head-down tilt position on the mean flow of the intra- and extracranial vessels. Our results suggest a shift from the external to the internal system that might play an important role in the pathomechanism of SANS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.