For over a decade now, a community of researchers has contributed to the development of the Unified Foundational Ontology (UFO)-aimed at providing foundations for all major conceptual modeling constructs. This ontology has led to the development of an Ontology-Driven Conceptual Modeling language dubbed OntoUML, reflecting the ontological micro-theories comprising UFO. Over the years, UFO and OntoUML have been successfully employed in a number of academic, industrial and governmental settings to create conceptual models in a variety of different domains. These experiences have pointed out to opportunities of improvement not only to the language itself but also to its underlying theory. In this paper, we take the first step in that direction by revising the theory of types in UFO in response to empirical evidence. The new version of this theory shows that many of the meta-types present in OntoUML (differentiating Kinds, Roles, Phases, Mixins, etc.) should be considered not as restricted to Substantial types but instead should be applied to model Endurant Types in general, including Relator types, Quality types and Mode types. We also contribute a formal characterization of this fragment of the theory, which is then used to advance a metamodel for OntoUML 2.0. Finally, we propose a computational support tool implementing this updated metamodel.
While conceptual modeling is strongly related to the final quality of the software product, conceptual modeling itself remains a challenging activity. In particular, modelers must ensure that conceptual models properly formalize their intended conceptualization of a domain. This paper proposes an approach to facilitate the validation process of conceptual models defined in OntoUML by transforming these models into specifications in the logic-based language Alloy and using its analyzer to generate instances of the model and assertion counter-examples. By allowing the observation of sequences of snapshots of model instances, the dynamics of object creation, classification, association and destruction are revealed. This confronts the modeler with the implications of modeling choices and allows them to uncover mistakes or gain confidence in the quality of conceptual models.
The Unified Foundational Ontology (UFO) was developed over the last two decades by consistently putting together theories from areas such as formal ontology in philosophy, cognitive science, linguistics, and philosophical logics. It comprises a number of micro-theories addressing fundamental conceptual modeling notions, including entity types and relationship types. The aim of this paper is to summarize the current state of UFO, presenting a formalization of the ontology, along with the analysis of a number of cases to illustrate the application of UFO and facilitate its comparison with other foundational ontologies in this special issue. (The cases originate from the First FOUST Workshop – the Foundational Stance, an international forum dedicated to Foundational Ontology research.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.