Campylobacter jejuni, a common foodborne zoonotic pathogen, causes gastroenteritis worldwide and is increasingly resistant to antibiotics. We aimed to investigate the antimicrobial resistance (AMR) genotypes of C. jejuni isolated from humans, poultry and birds from wild and urban Italian habitats to identify correlations between phenotypic and genotypic AMR in the isolates. Altogether, 644 C. jejuni isolates from humans (51), poultry (526) and wild- and urban-habitat birds (67) were analysed. The resistance phenotypes of the isolates were determined using the microdilution method with EUCAST breakpoints, and AMR-associated genes and single nucleotide polymorphisms were obtained from a publicly available database. Antimicrobial susceptibility testing showed that C. jejuni isolates from poultry and humans were highly resistant to ciprofloxacin (85.55% and 76.47%, respectively), nalidixic acid (75.48% and 74.51%, respectively) and tetracycline (67.87% and 49.02%, respectively). Fewer isolates from the wild- and urban-habitat birds were resistant to tetracycline (19.40%), fluoroquinolones (13.43%), and quinolone and streptomycin (10.45%). We retrieved seven AMR genes (tet (O), cmeA, cmeB, cmeC, cmeR, blaOXA-61 and blaOXA-184) and gyrA-associated point mutations. Two major B-lactam genes called blaOXA-61 and blaOXA-184 were prevalent at 62.93% and 82.08% in the poultry and the other bird groups, respectively. Strong correlations between genotypic and phenotypic resistance were found for fluoroquinolones and tetracycline. Compared with the farmed chickens, the incidence of AMR in the C. jejuni isolates from the other bird groups was low, confirming that the food-production birds are much more exposed to antimicrobials. The improper and overuse of antibiotics in the human population and in animal husbandry has resulted in an increase in antibiotic-resistant infections, particularly fluoroquinolone resistant ones. Better understanding of the AMR mechanisms in C. jejuni is necessary to develop new strategies for improving AMR programs and provide the most appropriate therapies to human and veterinary populations.
Campylobacter has developed resistance to several antimicrobial agents over the years, including macrolides, quinolones and fluoroquinolones, becoming a significant public health hazard. A total of 145 strains derived from raw milk, chicken faeces, chicken carcasses, cattle faeces and human faeces collected from various Italian regions, were screened for antimicrobial susceptibility, molecular characterization (SmaI pulsed-field gel electrophoresis) and detection of virulence genes (sequencing and DNA microarray analysis). The prevalence of C. jejuni and C. coli was 62.75% and 37.24% respectively. Antimicrobial susceptibility revealed a high level of resistance for ciprofloxacin (62.76%), tetracycline (55.86%) and nalidixic acid (55.17%). Genotyping of Campylobacter isolates using PFGE revealed a total of 86 unique SmaI patterns. Virulence gene profiles were determined using a new microbial diagnostic microarray composed of 70-mer oligonucleotide probes targeting genes implicated in Campylobacter pathogenicity. Correspondence between PFGE and microarray clusters was observed. Comparisons of PFGE and virulence profiles reflected the high genetic diversity of the strains examined, leading us to speculate different degrees of pathogenicity inside Campylobacter populations.
This study aimed to analyse the diversity of the Campylobacter jejuni population in broilers and to evaluate the major source of contamination in poultry meat. Eight rearing cycles over one year provided samples from three different broiler farms processed at the same slaughterhouse. A total of 707 C. jejuni were isolated from cloacal swabs before slaughter and from the breast skin of carcasses after slaughter and after chilling. All suspected Campylobacter colonies were identified with PCR assays and C. jejuni was genotyped by sequence analysis of the flaA short variable region (SVR) and by pulsed-field gel electrophoresis (PFGE) using SmaI enzyme. Phenotypic antibiotic resistance profiles were also assayed using minimal inhibitory concentration (MIC). The flocks carried many major C. jejuni clones possibly carrying over the rearing cycles, but cross contamination between farms may happen. Many isolates were resistant to fluoroquinolones, raising an issue of high public concern. Specific Campylobacter populations could be harboured within each poultry farm, with the ability to contaminate chickens during each new cycle. Thus, although biosecurity measures are applied, with a persistent source of contamination, they cannot be efficient. The role of the environment needs further investigation to better address strategies to control Campylobacter.
Food-borne campylobacteriosis is caused mainly by the handling or consumption of undercooked chicken meat or by the ingestion of contaminated raw milk. Knowledge about the contributions of different food sources to gastrointestinal disease is fundamental to prioritize food safety interventions and to establish proper control strategies. Assessing the genetic diversity among Campylobacter species is essential to our understanding of their epidemiology and population structure. We molecularly characterized 56 Campylobacter jejuni isolates (31 from patients hospitalized with gastroenteritis, 17 from raw milk samples, and 8 from chicken samples) using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) in order to trace the source of the disease. We also used a population genetic approach to investigate the source of the human cases from six different reservoirs of infection. MLST identified 25 different sequence types and 11 clonal complexes (CCs) (21, 658, 206, 353, 443, 48, 61, 257, 1332, 354, 574) and these included several alleles not cited previously in the PubMLST international database. The most prevalent CCs were 21, 206, and 354. PFGE showed 34 pulsotypes divided between 28 different clusters. At the fine scale, by means of PFGE and MLST, only two human cases were linked to raw milk, while one case was linked to chicken meat. The investigation revealed the presence of several genotypes among the human isolates, which probably suggests multiple foci for the infections. Finally, the source attribution model we used revealed that most cases were attributed to chicken (69.75%) as the main reservoir in Italy, followed to a lesser extent by the following sources: cattle (8.25%); environment (6.28%); wild bird (7.37%); small ruminant (5.35%), and pork (2.98%). This study confirms the importance of correlating epidemiological investigations with molecular epidemiological data to better understand the dynamics of infection.
Salmonella enterica is one of the most common causes of foodborne infection in the world, and the most common one in Italy. Italy collaborates with the other EU member states to survey the antimicrobial resistance of Salmonella on a large scale. This study on the situation in Apulia and Basilicata provides a more focused point of view on the territory, and anticipates the data reported in future Italian reports. Antimicrobial resistance was detected using the MIC detection method, with EUVSEC® plates, on the strains collected between 2017 and 2021. The results of serotyping showed that Salmonella Infantis is the serovar that has increased the most over time in veterinary samples, while Salmonella Tyhimurium and its monophasic variant are the most isolated in human samples. The results of the antimicrobial resistance study comply with European data, showing high resistance to quinolones, tetracyclines, ampicillin and trimethoprim, and low resistance to colistin and cephems. The significant exception was that all strains were resistant to sulphametoxazole. The presence of MDRs, which was 85% in veterinary and 77.4% in human strains, often included critically important antibiotics, which is a sign that more study and action is needed to manage the use of antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.