Tocotrienols (T3), the lesser known isomers of vitamin E, have been reported to possess anticancer activity both in in vitro and in vivo experimental models of rodents transplanted with parental tumors or treated with carcinogens. We investigated the effects of dietary supplementation with annatto-T3 (90% δ-T3 and 10% γ-T3) on the spontaneous development of mammary tumors in HER-2/neu transgenic mice. Underlying mechanisms of the antitumor effect were evaluated by studying apoptosis, senescent-like growth arrest, immune modulation, oxidative effect and the expression of HER-2/neu in tumoral mammary glands of transgenic mice and in vitro in human and mice tumor cell lines. Annatto-T3 supplementation delayed the development of mammary tumors, reducing the number and size of mammary tumor masses and those of lung metastases. In annatto-T3-supplemented mice, both apoptosis and senescent-like growth arrest of tumor cells were increased in mammary glands while no immune modulation was observed. In vitro, a dose-dependent inhibition of cell growth, increased apoptosis and senescent-like growth arrest and a time-dependent accumulation of reactive oxygen species were observed in tumor cells treated with annatto-T3 or purified δ-T3. Annatto-T3 reduced both HER-2/neu mRNA and p185(HER-2/neu) protein in tumors and in tumor cell lines. The results show that the antitumor effect of annatto-T3 supplementation in HER-2/neu transgenic mice is mainly related to the direct induction of oxidative stress, senescent-like growth arrest and apoptosis of tumor cells rather than to an immune modulation.
Immunosenescence is characterized by a series of changes of immune pathways, including a chronic state of low-grade inflammation. Mounting evidence from experimental and clinical studies suggests that persistent inflammation increases the risk of cancer and the progression of the disease. Cancer vaccination, which came into view in the last years as the most intriguing means of activating an immune response capable of effectively hampering the progression of the preclinical stages of a tumour, has been shown to be less effective in older age than in young adults. Available evidence on the use of inhibitors of inflammation has indicated their potential enhancement of cancer vaccines, suggesting the possibility to improve the low effectiveness of cancer vaccines in old age employing pharmacological or natural compounds-based anti-inflammatory intervention. This review addresses the effects of age and inflammation on cancer development and progression, and speculates as to whether the modulation of inflammation may influence the response to cancer immunization.
A relevant bacterial load in cutaneous wounds significantly interferes with the normal process of healing. Vitamin E (VE) is a known immunomodulator and immune enhancer. Here, it was shown that administration of VE before infection was effective at increasing the antimicrobial activity of daptomycin (DAP) or tigecycline (TIG) in a mouse model of wound infection caused by meticillinresistant Staphylococcus aureus (MRSA). A wound was established through the panniculus carnosus of mice and inoculated with MRSA. Mice were assigned to six groups: a VE pre-treated group with no antibiotics given after MRSA challenge; two VE pre-treated groups with DAP or TIG given after MRSA challenge; two groups treated with DAP or TIG only after MRSA challenge; and a control group that did not receive any treatment. Mice receiving each antibiotic alone showed a 3 log decrease in the number of c.f.u. recovered compared with the control group, mice treated with VE plus TIG had a 4 log decrease, whilst mice treated with VE plus DAP had the largest decrease in c.f.u. recovered (5 logs). The increased antimicrobial effect seen from treatment with VE plus antibiotics was associated with increased levels of natural killer cell cytotoxicity, with a more pronounced increase in leukocyte populations in mice treated with VE plus DAP. These data suggest that treatment with VE prior to infection and subsequent antibiotic treatment act in synergy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.