Three-dimensional (3D) culture systems are critical to investigate cell physiology and to engineer tissue grafts. In this study, we describe a simple yet innovative bioreactor-based approach to seed, expand, and differentiate bone marrow stromal cells (BMSCs) directly in a 3D environment, bypassing the conventional process of monolayer (two-dimensional [2D]) expansion. The system, based on the perfusion of bone marrow-nucleated cells through porous 3D scaffolds, supported the formation of stromal-like tissues, where BMSCs could be cocultured with hematopoietic progenitor cells in proportions dependent on the specific medium supplements. The resulting engineered constructs, when implanted ectopically in nude mice, generated bone tissue more reproducibly, uniformly, and extensively than scaffolds loaded with 2D-expanded BMSCs. The developed system may thus be used as a 3D in vitro model of bone marrow to study interactions between BMSCs and hematopoietic cells as well as to streamline manufacture of osteoinductive grafts in the context of regenerative medicine.
The BM-MSCs exhibit extensive anti-proliferative properties against lymphocytes under different conditions. This property might offer a form of immunomodulatory cellular therapy for AD patients if further confirmed in animal models.
Mesenchymal stromal/stem cell (MSC) expansion in conventional monolayer culture on plastic dishes (2D) leads to progressive loss of functionality and thus challenges fundamental studies on the physiology of skeletal progenitors, as well as translational applications for cellular therapy and molecular medicine. Here we demonstrate that 2D MSC expansion can be entirely bypassed by culturing freshly isolated bone marrow nucleated cells within 3D porous scaffolds in a perfusion-based bioreactor system. The 3D-perfusion system generated a stromal tissue that could be enzymatically treated to yield CD45- MSC. As compared to 2D-expanded MSC (control), those derived from 3D-perfusion culture after the same time (3 weeks) or a similar extent of proliferation (7–8 doublings) better maintained their progenitor properties, as assessed by a 4.3-fold higher clonogenicity and the superior differentiation capacity towards all typical mesenchymal lineages. Transcriptomic analysis of MSC from 5 donors validated the robustness of the process and indicated a reduced inter-donor variability and a significant upregulation of multipotency-related gene clusters following 3D-perfusion- as compared to 2D-expansion. Interestingly, the differences in functionality and transcriptomics between MSC expanded in 2D or under 3D-perfusion were only partially captured by cytofluorimetric analysis using conventional surface markers. The described system offers a multidisciplinary approach to study how factors of a 3D engineered niche regulate MSC function and, by streamlining conventional labor-intensive processes, is prone to automation and scalability within closed bioreactor systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.