The reactivity of the 2,2-diphenyl-1-picrylhydrazyl radical (dpph*) toward the N-methyl C-H bond of a number of 4-X-substituted- N, N-dimethylanilines (X = OMe, OPh, CH 3, H) has been investigated in MeCN, in the absence and in the presence of Mg(ClO 4) 2, by product, and kinetic analysis. The reaction was found to lead to the N-demethylation of the N, N-dimethylaniline with a rate quite sensitive to the electron donating power of the substituent (rho (+) = -2.03). With appropriately deuterated N, N-dimethylanilines, the intermolecular and intramolecular deuterium kinetic isotope effects (DKIEs) were measured with the following results. Intramolecular DKIE [( k H/ k D) intra] was found to always be similar to intermolecular DKIE [( k H/ k D) inter]. These results suggest a single-step hydrogen transfer mechanism from the N-C-H bond to dpph* which might take the form of a concerted proton-electron transfer (CPET). An electron transfer (ET) step from the aniline to dpph* leading to an anilinium radical cation, followed by a proton transfer step that produces an alpha-amino carbon radical, appears very unlikely. Accordingly, a rate-determining ET step would require no DKIE or at least different inter and intramolecular isotope effects. On the other hand, an equilibrium-controlled ET is not compatible with the small slope value (-0.22 kcal (-1) K (-1)) of the log k H/Delta G degrees plot. Furthermore, the reactivity increases by changing the solvent to the less polar toluene whereas the reverse would be expected for an ET mechanism. In the presence of Mg (2+), a strong rate acceleration was observed, but the pattern of the results remained substantially unchanged: inter and intramolecular DKIEs were again very similar as well as the substituent effects. This suggests that the same mechanism (CPET) is operating in the presence and in the absence of Mg (2+). The significant rate accelerating effect by Mg (2+) is likely due to a favorable interaction of the Mg (2+) ion with the partial negatively charged alpha-methyl carbon in the polar transition state for the hydrogen transfer process.
The reactivity of cumyloxyl radicals bearing cyclopropyl and 2,2-diphenylcyclopropyl groups in the para position has been investigated. Depending on radical structure, products deriving from C-C beta-scission and/or cyclopropyl ring-opening are observed, supporting the hypothesis that cumyloxyl (and, more generally, arylcarbinyloxyl) radicals exist in equilibrium with 1-oxaspiro[2,5]octadienyl radicals, in full agreement with the previously proposed mechanism for the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals.
A time-resolved kinetic study on the reactions of alkoxyl radicals with trialkyl and triaryl phosphites ((RO)(3)P: R = Me, Et, i-Pr, t-Bu; (ArO)(3)P: Ar = C(6)H(5), 2,4-(t-Bu)(2)C(6)H(3)) has been carried out. In the (RO)(3)P series, the alkoxyl radicals (cumyloxyl (CumO(*)) and benzyloxyl (BnO(*))) undergo addition to the phosphorus center with formation of intermediate tetraalkoxyphosphoranyl radicals (R'OP(*)(OR)(3): R = Me, Et, i-Pr, t-Bu; R' = Bn, Cum). The addition rate constants are influenced by steric effects, decreasing on going from R = Me to R = t-Bu and from BnO(*) to CumO(*). Rate constants for beta-scission of the phosphoranyl radicals R'OP(*)(OR)(3) have also been determined, increasing, for a given alkyl group R, in the order R' = tert-butyl < R' = benzyl < R' = cumyl and, for a given R' group, on going from R = Me to R = i-Pr. This behavior has been explained in terms of the relative stability of the radicals formed after beta-scission, suggesting moreover that steric effects play in this case a minor role. CumO(*) reacts with triaryl phosphites (ArO)(3)P to give phenoxyl radicals, with rate constants that are influenced to a limited extent by substitution of the aromatic rings. The radical scavenging ability of these substrates is briefly discussed.
a b s t r a c tA product study on the reactivity of a 1,1-diarylalkoxyl radical bearing 2,2-diphenylcyclopropyl groups in the para-positions has been carried out. The exclusive formation of a product deriving from cyclopropyl ring-opening has been observed, indicating that 1,1-diarylalkoxyl radicals exist in equilibrium with a bridged 1-oxaspiro[2,5]octadienyl radical. This represents the first experimental evidence in support of the stepwise nature of the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.