Therapeutic antibodies that block the programmed death-ligand 1 (PD-L1)/programmed death-1 (PD-1) pathway can induce robust and durable responses in patients with various cancers, including metastatic urothelial cancer (mUC)1–5. However, these responses only occur in a subset of patients. Elucidating the determinants of response and resistance is key to improving outcomes and developing new treatment strategies. Here, we examined tumours from a large cohort of mUC patients treated with an anti–PD-L1 agent (atezolizumab) and identified major determinants of clinical outcome. Response was associated with CD8+ T-effector cell phenotype and, to an even greater extent, high neoantigen or tumour mutation burden (TMB). Lack of response was associated with a signature of transforming growth factor β (TGF-β) signalling in fibroblasts, particularly in patients with CD8+ T cells that were excluded from the tumour parenchyma and instead found in the fibroblast- and collagen-rich peritumoural stroma—a common phenotype among patients with mUC. Using a mouse model that recapitulates this immune excluded phenotype, we found that therapeutic administration of a TGF-β blocking antibody together with anti–PD-L1 reduced TGF-β signalling in stromal cells, facilitated T cell penetration into the centre of the tumour, and provoked vigorous anti-tumour immunity and tumour regression. Integration of these three independent biological features provides the best basis for understanding outcome in this setting and suggests that TGF-β shapes the tumour microenvironment to restrain anti-tumour immunity by restricting T cell infiltration.
With only a fraction of patients responding to cancer immunotherapy, a better understanding of the entire tumor microenvironment is needed. Using single-cell transcriptomics, we chart the fi broblastic landscape during pancreatic ductal adenocarcinoma (PDAC) progression in animal models. We identify a population of carcinoma-associated fi broblasts (CAF) that are programmed by TGFβ and express the leucine-rich repeat containing 15 (LRRC15) protein. These LRRC15 + CAFs surround tumor islets and are absent from normal pancreatic tissue. The presence of LRRC15 + CAFs in human patients was confi rmed in >80,000 single cells from 22 patients with PDAC as well as by using IHC on samples from 70 patients. Furthermore, immunotherapy clinical trials comprising more than 600 patients across six cancer types revealed elevated levels of the LRRC15 + CAF signature correlated with poor response to anti-PD-L1 therapy. This work has important implications for targeting nonimmune elements of the tumor microenvironment to boost responses of patients with cancer to immune checkpoint blockade therapy. SIGNIFICANCE:This study describes the single-cell landscape of CAFs in pancreatic cancer during in vivo tumor evolution. A TGFβ-driven, LRRC15 + CAF lineage is associated with poor outcome in immunotherapy trial data comprising multiple solid-tumor entities and represents a target for combinatorial therapy.
The online version of this article has a Supplementary Appendix. BackgroundMacrophages play a key role in iron homeostasis. In peripheral tissues, they are known to polarize into classically activated (or M1) macrophages and alternatively activated (or M2) macrophages. Little is known on whether the polarization program influences the ability of macrophages to store or recycle iron and the molecular machinery involved in the processes. Design and MethodsInflammatory/M1 and alternatively activated/M2 macrophages were propagated in vitro from mouse bone-marrow precursors and polarized in the presence of recombinant interferon-γ or interleukin-4. We characterized and compared their ability to handle radioactive iron, the characteristics of the intracellular iron pools and the expression of molecules involved in internalization, storage and export of the metal. Moreover we verified the influence of iron on the relative ability of polarized macrophages to activate antigen-specific T cells. ResultsM1 macrophages have low iron regulatory protein 1 and 2 binding activity, express high levels of ferritin H, low levels of transferrin receptor 1 and internalize -albeit with low efficiencyiron only when its extracellular concentration is high. In contrast, M2 macrophages have high iron regulatory protein binding activity, express low levels of ferritin H and high levels of transferrin receptor 1. M2 macrophages have a larger intracellular labile iron pool, effectively take up and spontaneously release iron at low concentrations and have limited storage ability. Iron export correlates with the expression of ferroportin, which is higher in M2 macrophages. M1 and M2 cells activate antigen-specific, MHC class II-restricted T cells. In the absence of the metal, only M1 macrophages are effective. ConclusionsCytokines that drive macrophage polarization ultimately control iron handling, leading to the differentiation of macrophages into a subset which has a relatively sealed intracellular iron content (M1) or into a subset endowed with the ability to recycle the metal (M2).Key words: macrophages, iron, inflammation. 95(11):1814-1822 doi:10.3324/haematol.2010 This is an open-access paper. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica Polarization dictates iron handling by inflammatory and alternatively activated macrophages
SUMMARY Ex vivo expansion of satellite cells and directed differentiation of pluripotent cells to mature skeletal muscle have proved difficult challenges for regenerative biology. Using a zebrafish embryo culture system with reporters of early and late skeletal muscle differentiation, we examined the influence of 2,400 chemicals on myogenesis and identified six that expanded muscle progenitors, including three GSK3β inhibitors, two calpain inhibitors and one adenylyl cyclase activator, forskolin. Forskolin also enhanced proliferation of mouse satellite cells in culture and maintained their ability to engraft muscle in vivo. A combination of bFGF, forskolin and the GSK3β inhibitor BIO induced skeletal muscle differentiation in human induced pluripotent stem cells (iPSCs) and produced engraftable myogenic progenitors that contributed to muscle repair in vivo. In summary, these studies reveal functionally conserved pathways regulating myogenesis across species and identify chemical compounds that expand mouse satellite cells and differentiate human iPSCs into engraftable muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.