Background In February 2020, a locally-acquired COVID-19 case was detected in Lombardia, Italy. This was the first signal of ongoing transmission of SARS-CoV-2 in the country. The outbreak rapidly escalated to a national level epidemic, amid the WHO declaration of a pandemic. MethodsWe analysed data from the national case-based integrated surveillance system of all RT-PCR confirmed COVID-19 infections as of March 24 th 2020, collected from all Italian regions and autonomous provinces. Here we provide a descriptive epidemiological summary on the first 62,843 COVID-19 cases in Italy as well as estimates of the basic and net reproductive numbers by region.Findings Of the 62,843 cases of COVID-19 analysed, 71·6% were reported from three Regions (Lombardia, Veneto and Emilia-Romagna). All cases reported after February 20 th were locally acquired. Estimates of R0 varied between 2·5 (95%CI: 2·18-2·83) in Toscana and 3 (95%CI: 2·68-3·33) in Lazio, with epidemic doubling time of 3·2 days (95%CI: 2·3-5·2) and 2.9 days (95%CI: 2·2-4·3), respectively. The net reproduction number showed a decreasing trend starting around February 20-25, 2020 in Northern regions. Notably, 5,760 cases were reported among health care workers. Of the 5,541 reported COVID-19 associated deaths, 49% occurred in people aged 80 years or above with an overall crude CFR of 8·8%. Male sex and age were independent risk factors for COVID-19 death.Interpretation The COVID-19 infection in Italy emerged with a clustering onset similar to the one described in Wuhan, China and likewise showed worse outcomes in older males with comorbidities. Initial R0 at 2·96 in Lombardia, explains the high case-load and rapid geographical spread observed. Overall Rt in Italian regions is currently decreasing albeit with large diversities across the country, supporting the importance of combined non-pharmacological control measures.Funding: routine institutional funding was used to perform this work.
Background Aim of the present study is to describe characteristics of COVID-19-related deaths and to compare the clinical phenotype and course of COVID-19-related deaths occurring in adults (<65 years) and older adults (≥65 years). Method Medical charts of 3,032 patients dying with COVID-19 in Italy (368 aged < 65 years and 2,664 aged ≥65 years) were revised to extract information on demographics, preexisting comorbidities, and in-hospital complications leading to death. Results Older adults (≥65 years) presented with a higher number of comorbidities compared to those aged <65 years (3.3 ± 1.9 vs 2.5 ± 1.8, p < .001). Prevalence of ischemic heart disease, atrial fibrillation, heart failure, stroke, hypertension, dementia, COPD, and chronic renal failure was higher in older patients (≥65 years), while obesity, chronic liver disease, and HIV infection were more common in younger adults (<65 years); 10.9% of younger patients (<65 years) had no comorbidities, compared to 3.2% of older patients (≥65 years). The younger adults had a higher rate of non-respiratory complications than older patients, including acute renal failure (30.0% vs 20.6%), acute cardiac injury (13.5% vs 10.3%), and superinfections (30.9% vs 9.8%). Conclusions Individuals dying with COVID-19 present with high levels of comorbidities, irrespective of age group, but a small proportion of deaths occur in healthy adults with no preexisting conditions. Non-respiratory complications are common, suggesting that the treatment of respiratory conditions needs to be combined with strategies to prevent and mitigate the effects of non-respiratory complications.
The pvdA gene, encoding the enzyme L-ornithine N 5 -oxygenase, catalyzes a key step of the pyoverdin biosynthetic pathway in Pseudomonas aeruginosa. Expression studies with a promoter probe vector made it possible to identify three tightly iron-regulated promoter regions in the 5.9-kb DNA fragment upstream of pvdA. The promoter governing pvdA expression was located within the 154-bp sequence upstream of the pvdA translation start site. RNA analysis showed that expression of PvdA is iron regulated at the transcriptional level. Primer extension and S1 mapping experiments revealed two 5 termini of the pvdA transcript, 68 bp (T1) and 43 bp (T2) 5 of the PvdA initiation. The pvdA transcripts were monocystronic, with T1 accounting for 90% of the pvdA mRNA. Fur box-like sequences were apparently absent in the regions 5 of pvdA transcription start sites. A sequence motif resembling the ؊10 hexamer of AlgU-dependent promoters and the iron starvation box of pyoverdin genes controlled by the E -like factor PvdS were identified 5 of the T1 start site. The minimum DNA region required for iron-regulated promoter activity was mapped from bp ؊41 to ؊154 relative to the ATG translation start site of pvdA. We used pvdA::lacZ transcriptional fusions and Northern (RNA) analyses to study the involvement of Fur and PvdS in the iron-regulated expression of pvdA. Two fur mutants of P. aeruginosa were much less responsive than wild-type PAO1 to the iron-dependent regulation of pvdA expression. Transcription from the pvdA promoter did not occur in a heterologous host unless in the presence of the pvdS gene in trans and was abrogated in a pvdS mutant of P. aeruginosa. Interaction of the Fur repressor with a 150-bp fragment encompassing the pvdS promoter was demonstrated in vivo by the Fur titration assay and confirmed in vitro by gel retardation experiments with a partially purified Fur preparation. Conversely, the promoter region of pvdA did not interact with Fur. Our results support the hypothesis that the P. aeruginosa Fur repressor indirectly controls pvdA transcription through the intermediary sigma factor PvdS; in the presence of sufficient iron, Fur blocks the pvdS promoter, thus preventing PvdS expression and consequently transcription of pvdA and other pyoverdin biosynthesis genes.
Atherosclerotic lesions are infiltrated by macrophages and T lymphocytes, potentially reactive to pathogens. We studied in vivo activated T lymphocytes that infiltrate atherosclerotic plaques of Helicobacter pylori-infected patients with or without anti-Chlamydia pneumoniae antibodies. In all atherosclerotic lesions, T helper type 1 (Th1) cells were predominant. C. pneumoniae-specific T cells were detected only in the plaques of anti-C. pneumoniae seropositive patients, whereas H. pylori-specific T cells were found in the gastric mucosa but not in the plaques of the same patients. Plaque-derived Th1 cells expressed cytotoxicity, proapoptotic activity, and help for monocyte tissue factor production. Although multifactorial, atherosclerosis can be regarded as a Th1-driven immunopathological condition.
The enzyme L-ornithine N5-oxygenase catalyzes the hydroxylation of L-ornithine (L-Orn), which represents an early step in the biosynthesis of the peptidic moiety of the fluorescent siderophore pyoverdin in Pseudomonas aeruginosa. A gene bank of DNA from P. aeruginosa PAO1 (ATCC 15692) was constructed in the broad-host-range cosmid pLAFR3 and mobilized into the L-Orn N5-oxygenase-defective (pvdA) P. aeruginosa mutant PALS124. Screening for fluorescent transconjugants made it possible to identify the trans-complementing cosmid pPV4, which was able to restore pyoverdin synthesis and L-Orn N5-oxygenase activity in the pvdA mutant PALS124. The 17-kb PAO1 DNA insert of pPV4 contained at least two genetic determinants involved in pyoverdin synthesis, i.e., pvdA and pvdC4, as shown by complementation analysis of a set of mutants blocked in different steps of the pyoverdin biosynthetic pathway. Deletion analysis, subcloning, and transposon mutagenesis enabled us to locate the pvdA gene in a minimum DNA fragment of 1.7 kb flanked by two SphI restriction sites. Complementation of the pvdA mutation was under stringent iron control; both pyoverdin synthesis and L-Orn N5-oxygenase activity were undetectable in cells of the trans-complemented mutant which had been grown in the presence of 100 microM FeCl3. The entire nucleotide sequence of the pvdA gene, from which the primary structure of the encoded polypeptide was deduced, was determined. The pvdA structural gene is 1,278 bp; the cloned DNA fragment contains at the 5' end of the gene a putative ribosome-binding site but apparently lacks known promoterlike sequences. The P. aeruginosa L-Orn N5-oxygenase gene codes for a 426-amino-acid peptide with a predicted molecular mass of 47.7 kDa and an isoelectric point of 8.1. The enzyme shows approximately 50% homology with functional analogs, i.e., L-lysine N6-hydroxylase of aerobactin-producing Escherichia coli and L-Orn N5-oxygenase of ferrichrome-producing Ustilago maydis. The pvdA gene was expressed in P. aeruginosa under the control of the T7 promoter. Induction of the T7 RNA polymerase system resulted in parallel increases of the L-Orn N5-oxygenase activity and of the amount of a 47.7-kDa polypeptide. We also constructed a site-specific pvdA mutant by insertion of a tetracycline-resistance cassette in the chromosomal pvdA gene of P. aeruginosa PAO1. Similarly to strain PALS124, the pvdA mutant obtained by gene disruption also disclosed no pyoverdin synthesis, lacked L-Orn N5-oxygenase activity, was complemented by the cloned pvdA gene, and produced pyoverdin at wild-type levels when fed with the biosynthetic precursor L-N5-OH-Orn. Southern blot analysis indicated that genes homologous to pvdA could be located within a 1.7-kb DNA fragment from SphI-digested genomic DNA of different hydroxamate-producing Pseudomonas spp. Our results suggest that omega-amino acid oxygenases have been conserved over a wide evolutionary range and probably evolved from a common ancestor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.