High resolution melting curve analysis (HRM) has been used as an efficient, accurate and cost-effective tool to detect single nucleotide polymorphisms (SNPs) or insertions or deletions (INDELs). However, its efficiency, accuracy and applicability to discriminate microsatellite polymorphism have not been extensively assessed. The traditional protocols used for SSR genotyping include PCR amplification of the DNA fragment and the separation of the fragments on electrophoresis-based platform. However, post-PCR handling processes are laborious and costly. Furthermore, SNPs present in the sequences flanking repeat motif cannot be detected by polyacrylamide-gel-electrophoresis based methods. In the present study, we compared the discriminating power of HRM with the traditional electrophoresis-based methods and provided a panel of primers for HRM genotyping in Citrus. The results showed that sixteen SSR markers produced distinct polymorphic melting curves among the Citrus spp investigated through HRM analysis. Among those, 10 showed more genotypes by HRM analysis than capillary electrophoresis owing to the presence of SNPs in the amplicons. For the SSR markers without SNPs present in the flanking region, HRM also gave distinct melting curves which detected same genotypes as were shown in capillary electrophoresis (CE) analysis. Moreover, HRM analysis allowed the discrimination of most of the 15 citrus genotypes and the resulting genetic distance analysis clustered them into three main branches. In conclusion, it has been approved that HRM is not only an efficient and cost-effective alternative of electrophoresis-based method for SSR markers, but also a method to uncover more polymorphisms contributed by SNPs present in SSRs. It was therefore suggested that the panel of SSR markers could be used in a variety of applications in the citrus biodiversity and breeding programs using HRM analysis. Furthermore, we speculate that the HRM analysis can be employed to analyse SSR markers in a wide range of applications in all other species.
Antifungal genes from micro-organisms were inserted into the genome of a number of plant species, representing a promising strategy for conferring genetic disease resistance against a broad range of plant pathogenic fungi. In the present study, the chit42 gene from Trichoderma harzianum (codifying the antifungal protein endochitinase) was introduced into the ÔFemminello siracusanoÕ lemon by Agrobacterium tumefaciens, in order to regenerate transgenic plants resistant to fungal disease. Three polymerase chain reaction (PCR)-positive clones were obtained. Southern blot confirmed the integration of the transgene in the lemon genome and revealed that one or two copies had been inserted. Reverse transcriptase-PCR, Northern blot and Western analysis were performed and the results confirmed the expression of the inserted gene. The transgenic clones were tested in vitro and in vivo for disease resistance. Conidia germination and fungal growth of Phoma tracheiphila were strongly inhibited in vitro by the transgenic foliar proteins, while no effects were observed with the controls. Disease resistance assays were performed in vivo with Botrytis cinerea, the causal agent of grey mould in fruit. Transgenic lemon plants, inoculated with lemon petals infected by a single-conidial isolate of B. cinerea, showed significantly less lesion development than the controls. On the whole, the results indicate that the transformation with the antifungal endochitinase gene may represent a strategy for disease control in citrus crops.
Constitutive over-expression of antifungal genes from microorganisms involved in plant defence mechanisms represents a promising strategy for conferring genetic resistance against a broad range of plant pathogenic fungi. In the present work, two transgenic lemon clones with the chit42 gene from Trichoderma harzianum were tested for resistance to fungal disease and expression level of defence-related genes was evaluated. Different resistance-related processes, such as production of reactive oxygen species (ROS), systemic acquired resistance (SAR) and induced systemic resistance (ISR), were monitored in transgenic and wild type lemon clones inoculated with Botrytis cinerea, the causal agent of grey mould in citrus. Expression of genes that encode gluthatione peroxidase (GPX), a producer of ROS, chitinases, glucanases (SAR), PAL, HPL, and AOS (ISR) was measured by quantitative PCR during the first 24 h after leaf inoculation. Leaves of transgenic lemon plants inoculated with B. cinerea showed significantly less lesion development than wild type leaves. Tissues from detached leaves of different transgenic lemon clones showed a significant correlation between resistance and transgene expression. On the other hand, the over-expression of the transgenic fungal gene enhanced by two-three folds transcript levels of genes associated with enhanced ROS production and ISR establishment, while the expression of native chitinase and glucanase genes involved in SAR was down-regulated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.