In this work we construct a low-order nonconforming approximation method for linear elasticity problems supporting general meshes and valid in two and three space dimensions. The method is obtained by hacking the Hybrid High-Order method of [18], that requires the use of polynomials of degree k ≥ 1 for stability. Specifically, we show that coercivity can be recovered for k = 0 by introducing a novel term that penalises the jumps of the displacement reconstruction across mesh faces. This term plays a key role in the fulfillment of a discrete Korn inequality on broken polynomial spaces, for which a novel proof valid for general polyhedral meshes is provided. Locking-free error estimates are derived for both the energy-and the L 2 -norms of the error, that are shown to convergence, for smooth solutions, as h and h 2 , respectively (here, h denotes the meshsize). A thorough numerical validation on a complete panel of two-and three-dimensional test cases is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.