Eritrea is a multi-ethnic country of over 3 million of people consisting of different ethnic groups, having each its own language and cultural tradition. Due to the lack of population genetic data for markers of forensic interest, in this study, we analyzed the genetic polymorphisms of 23 Y-chromosome STR loci and of 12 X-chromosome STR loci in a sample of 255 unrelated individuals from 8 Eritrean ethnic groups, with the aim to generate a reference haplotype database for anthropological and forensic applications. X- and Y-chromosomes markers may indeed offer information especially in personal identification and kinship testing, when relying on the availability of large local population data to derive sufficiently accurate frequency estimates. The population genetic analyses in the Eritrean sample for both the two set of Y- and X-STR markers showed high power of discrimination both at country-based and population levels. Comparison population results highlight the importance of considering the ethnic composition within the analyzed country and the necessity of increasing available data especially when referring to heterogeneous populations such as the African ones.
The collection of biological debris beneath fingernails can be useful in forensic casework when a struggle between the victim and the offender is suspected. In the present study, we set up a controlled scratching experiment in which female volunteers scratched the male volunteers' forearms, simulating a defensive action during an assault. A total of 160 fingernail samples were collected: 80 "control samples" before the scratching, 40 samples immediately after the scratching (t = 0 h), and 40 samples 5 h after the scratching (t = 5 h). The aim was to evaluate, using a real-time PCR approach and Y-STR profiling, the transfer and the persistence of male DNA under female fingernails after scratching. A significant reduction in DNA yield was observed between fingernail samples collected immediately and those collected 5 h after scratching, with a corresponding decrease in Y-STR profile quality. Overall, 38/40 (95%) of the fingernail samples collected immediately (t = 0 h) and 24/40 (60%) of those collected 5 h later (t = 5 h) were suitable for comparison and the scratched male volunteers could not be excluded as donors of the foreign DNA from 37 (92.5%) of the t = 0 h and from 10 (25%) of the t = 5 h profiles. The analysis of male DNA under female fingernails showed that Y-chromosome STR typing may provide extremely valuable genetic information of the male contributor(s), although 5 h after scratching the profile of the scratched male was lost in three-quarters of samples.
Fly artifacts resulting from insect activity could act as confounding factors on a crime scene and interfere with bloodstain pattern analysis interpretation. Several techniques have been proposed to distinguish fly artifacts from human bloodstains based on morphological approach and immunological assay, but a DNA-based method has not been developed so far. Even if in forensic genetic investigations the detection of human DNA is generally the primary goal, fly artifacts can provide useful information on the dynamics of crime events. The present study provides a molecular method to detect fly DNA from artifacts deposited by Calliphora vomitoria after feeding on human blood through the analysis of the mitochondrial cytochrome oxidase gene subunit I (COI). Fly artifacts originated from digestive process and of different morphology spanning from red and brownish/light brown, circular and elliptical stains to artifacts with sperm-like tail or a tear-shaped body were collected. The COI amplification was successfully obtained in 94% of fly artifact samples. The method showed high sensitivity and reproducibility, and no human DNA contamination was observed, offering specificity for use in confirmatory test. This molecular approach permits the distinction of fly artifacts from genuine bloodstains and the identification of fly’s species through the COI region sequencing by protocols usually applied in forensic genetic laboratories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.