Ferritin is important in iron homeostasis. Its twenty-four chains of two types, H and L, assemble as a hollow shell providing an iron-storage cavity. Ferritin molecules in cells containing high levels of iron tend to be rich in L chains, and may have a long-term storage function, whereas H-rich ferritins are more active in iron metabolism. The molecular basis for the greater activity of H-rich ferritins has until now been obscure, largely because the structure of H-chain ferritin has remained unknown owing to the difficulties in obtaining crystals ordered enough for X-ray crystallographic analysis. Here we report the three-dimensional structure of a human ferritin H-chain homopolymer. By genetically engineering a change in the sequence of the intermolecular contact region, we obtained crystals isomorphous with the homologous rat L ferritin and of high enough quality for X-ray diffraction analysis. The X-ray structure of human H ferritin shows a novel metal site embedded within each of its four-helix bundles and we suggest that ferroxidase activity associated with this site accounts for its rapid uptake of iron.
Three percent of the world's population is chronically infected with the hepatitis C virus (HCV) and at risk of developing liver cancer. Effective cellular immune responses are deemed essential for spontaneous resolution of acute hepatitis C and long-term protection. Here we describe a new T-cell HCV genetic vaccine capable of protecting chimpanzees from acute hepatitis induced by challenge with heterologous virus. Suppression of acute viremia in vaccinated chimpanzees occurred as a result of massive expansion of peripheral and intrahepatic HCV-specific CD8(+) T lymphocytes that cross-reacted with vaccine and virus epitopes. These findings show that it is possible to elicit effective immunity against heterologous HCV strains by stimulating only the cellular arm of the immune system, and suggest a path for new immunotherapy against highly variable human pathogens like HCV, HIV or malaria, which can evade humoral responses.
Ferroxidase activity in human H-chain ferritin has been studied with the aid of site-directed mutagenesis. A site discovered by X-ray crystallography has now been identified as the ferroxidase centre. This centre is present only in H-chains and is located within the four-helix bundle of the chain fold.
The human scavenger class B type 1 receptor (SR-B1/Cla1) was identified as a putative receptor for hepatitis C virus (HCV) because it binds to soluble recombinant HCV envelope glycoprotein E2 (sE2). High-density lipoprotein (HDL), a natural SR-B1 ligand, was shown to increase the in vitro infectivity of retroviral pseudoparticles bearing HCV envelope glycoproteins and of cell culture-derived HCV (HCVcc), suggesting that SR-B1 promotes viral entry in an HDL-dependent manner. To determine whether SR-B1 participates directly in HCV infection or facilitates HCV entry through lipoprotein uptake, we generated a panel of monoclonal antibodies (MAbs) against native human SR-B1. Two of them, 3D5 and C167, bound to conformationdependent SR-B1 determinants and inhibited the interaction of sE2 with SR-B1. These antibodies efficiently blocked HCVcc infection of Huh-7.5 hepatoma cells in a dose-dependent manner. To examine the role of HDL in SR-B1-mediated HCVcc infection, we set up conditions for HCVcc production and infection in serum-free medium. HCVcc efficiently infected Huh-7.5 cells in the absence of serum lipoproteins, and addition of HDL led to a twofold increase in infectivity. However, the HDL-induced enhancement of infection had no impact on the neutralization potency of MAb C167, despite its ability to inhibit both HDL binding to cells and SR-B1-mediated lipid transfer. Of note, MAb C167 also potently blocked Huh-7.5 infection by an HCV strain recovered from HCVcc-infected chimpanzees. These results demonstrate that SR-B1 is essential for infection with HCV produced in vitro and in vivo and suggest the possible use of anti-SR-B1 antibodies as therapeutic agents.Hepatitis C virus (HCV) is the major etiological agent of both community-acquired and posttransfusion non-A, non-B viral hepatitis. Approximately 80% of infected patients develop chronic hepatitis, among which 20% to 30% progress to liver cirrhosis and end-stage liver disease. Chronic infection correlates with an increased risk of hepatocellular carcinoma. Currently available therapies are limited to administration of pegylated alpha interferon in combination with ribavirin (27). Such treatment is expensive, is often unsuccessful, and carries the risk of significant side effects. Consequently, the development of novel therapeutic approaches against HCV remains a high-priority goal.HCV is an enveloped virus of the family Flaviviridae whose viral genome is a single-stranded, positive-sense RNA of approximately 9.6 kb that encodes a single polyprotein of 3,010 to 3,033 amino acids that is cleaved into nine mature proteins by a combination of host and viral peptidases (24). The predicted structural components comprise the core (C) (ϳ21 kDa) and two heavily N-glycosylated envelope glycoproteins, E1 (ϳ31 kDa) and E2 (ϳ70 kDa). Both E1 and E2 are believed to be type I transmembrane proteins, with N-terminal ectodomains and C-terminal hydrophobic anchors. HCV entry into target cells occurs after attachment to specific cellular receptors via its surface glycoprotei...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.