Volatile organic compounds (VOCs) have been proposed as one of the main factors for differentiating honeys from different botanical/floral origins. In this work, we investigated the volatile profile of honeys, commercially labeled as buckwheat honeys, from the Alps and its relationship with melissopalynological investigation. The results showed that buckwheat honey samples that contained, to different extents, buckwheat pollen grains on melissopalynological analyses showed similar VOCs profiles, distinguishing them from the other honey floral types analyzed. Among VOCs identified, 3-methylbutanal, butanoic acid, pentanoic acid, and isovaleric acid were considerably greater in the buckwheat honey samples from the Alps. Other compounds were identified only in the honeys containing buckwheat pollen grains such as 3-methyl-2-buten-1-ol, 2-butanone, 2-hydroxy-3-pentanone, 4-methylpentanoic acid, 4-pentanoic acid, butanal, 2-methylbutanal, pentanal, dihydro-2-methyl-3(2H)-furanone, 5-methylfurfural, andcis-linalool oxide. These compounds give to buckwheat honey its characteristic aromatic and organoleptic properties and may be considered interesting as potential “variety markers” for botanical determination.
Abstract:The volatile fraction of Ophrys sphegodes Mill. subsp. sphegodes, Ophrys bertolonii subsp. benacensis (Reisigl) O. Danesch, E. Danasch & Ehrend. and Neotinea tridentata (Scop.) R.M. Bateman, Pridgeon & M.W. Case, three orchid species with different pollinator attraction strategies, sampled in vivo and in situ, were evaluated by headspace solid phase microextraction coupled with gas-chromatography and mass spectrometry. The results were compared with the volatile compounds emitted by flowering plant samples picked from the same populations of orchid species. Hydrocarbons, aldehydes, alcohols and terpenes were the major constituents of "in vivo" orchid scents and some distinctive differences in volatile metabolite composition were observed between Ophrys and Neotinea species. Moreover, the odour bouquets of the picked flowering plant samples were different from the in vivo ones and in particular different proportions of the various terpenes and an increase of α-pinene were observed. In conclusion HS/SPME GCMS proved to be a suitable technique for analyzing and distinguishing the volatile fingerprint of different orchid species, sampled in vivo and in situ in a non-disruptive way, with potentially great advantages for ecophysiological studies of rare and endangered species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.