Centofanti et al./AdaSS Estimator for the FoF Linear Regression Model 2 terms of estimation and prediction accuracy. Lastly, those advantages are illustrated also on two real-data benchmark examples.
Data taking value on a Riemannian manifold and observed over a complex spatial domain are becoming more frequent in applications, e.g. in environmental sciences and in geoscience. The analysis of these data needs to rely on local models to account for the non stationarity of the generating random process, the non linearity of the manifold and the complex topology of the domain. In this paper, we propose to use a random domain decomposition approach to estimate an ensemble of local models and then to aggregate the predictions of the local models through Fréchet averaging. The algorithm is introduced in complete generality and is valid for data belonging to any smooth Riemannian manifold but it is then described in details for the case of the manifold of positive definite matrices, the hypersphere and the Cholesky manifold. The predictive performance of the method are explored via simulation studies for covariance matrices and correlation matrices, where the Cholesky manifold geometry is used. Finally, the method is illustrated on an environmental dataset observed over the Chesapeake Bay (USA).
A new orthogonal decomposition for bivariate probability densities embedded in Bayes Hilbert spaces is derived. It allows one to represent a density into independent and interactive parts, the former being built as the product of revised definitions of marginal densities and the latter capturing the dependence between the two random variables being studied. The developed framework opens new perspectives for dependence modelling (which is commonly performed through copulas), and allows for the analysis of dataset of bivariate densities, in a Functional Data Analysis perspective. A spline representation for bivariate densities is also proposed, providing a computational cornerstone for the developed theory.
Modern statistical process monitoring (SPM) applications focus on profile monitoring, i.e., the monitoring of process quality characteristics that can be modeled as profiles, also known as functional data. Despite the large interest in the profile monitoring literature, there is still a lack of software to facilitate its practical application. This article introduces the funcharts R package that implements recent developments on the SPM of multivariate functional quality characteristics, possibly adjusted by the influence of additional variables, referred to as covariates. The package also implements the real-time version of all control charting procedures to monitor profiles partially observed up to an intermediate domain point. The package is illustrated both through its built-in data generator and a real-case study on the SPM of Ro-Pax ship CO 2 emissions during navigation, which is based on the ShipNavigation data provided in the Supplementary Material.
The development of data acquisition systems is facilitating the collection of data that are apt to be modelled as functional data. In some applications, the interest lies in the identification of significant differences in group functional means defined by varying experimental conditions, which is known as functional analysis of variance (FANOVA). With real data, it is common that the sample under study is contaminated by some outliers, which can strongly bias the analysis. In this paper, we propose a new robust nonparametric functional ANOVA method (RoFANOVA) that reduces the weights of outlying functional data on the results of the analysis. It is implemented through a permutation test based on a test statistic obtained via a functional extension of the classical robust M -estimator. By means of an extensive Monte Carlo simulation study, the proposed test is compared with some alternatives already presented in the literature, in both one-way and two-way designs. The performance of the RoFANOVA is demonstrated in the framework of a motivating real-case study in the field of additive manufacturing that deals with the analysis of spatter ejections. The RoFANOVA method is implemented in the R package rofanova, available online at https://github.com/unina-sfere/rofanova.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.