Interleukin-17A (IL-17A) and IL-17F are 2 of several cytokines produced by T helper 17 cells (Th17), which are able to indirectly induce the recruitment of neutrophils. Recently, human Th17 cells have been phenotypically characterized and shown to express discrete chemokine receptors, including CCR2 and CCR6. Herein, we show that highly purified neutrophils cultured with interferon-␥ plus lipopolysaccharide produce the CCL2 and CCL20 chemokines, the known ligands of CCR2 and CCR6, respectively. Accordingly, supernatants from activated neutrophils induced chemotaxis of Th17 cells, which was greatly suppressed by anti-CCL20 and anti-CCL2 antibodies. We also discovered that activated Th17 cells could directly chemoattract neutrophils via the release of biologically active CXCL8. Consistent with this reciprocal recruitment, neutrophils and Th17 cells were found in gut tissue from Crohn disease and synovial fluid from rheumatoid arthritis patients. Finally, we report that, although human Th17 cells can directly interact with freshly isolated or preactivated neutrophils via granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-␣, and interferon-␥ release, these latter cells cannot be activated by IL-17A and IL-17F, because of their lack of IL-17RC expression. Collectively, our results reveal a novel chemokine-dependent reciprocal cross-talk between neutrophils and Th17 cells, which may represent a useful target for the treatment of chronic inflammatory diseases. (Blood. 2010;115:335-343)
Polymorphonuclear neutrophils, besides their involvement in primary defense against infections – mainly through phagocytosis, generation of toxic molecules, release of enzymes, and formation of extracellular traps – are also becoming increasingly important for their contribution to the fine regulation in development of inflammatory and immune responses. These latter functions of neutrophils occur, in part, via their de novo production and release of a large variety of cytokines, including chemotactic cytokines (chemokines). Accordingly, the improvement in technologies for molecular and functional cell analysis, along with concomitant advances in cell purification techniques, have allowed the identification of a continuously growing list of neutrophil-derived cytokines, as well as the characterization of their biological implications in vitro and/or in vivo. This short review summarizes crucial concepts regarding the modalities of expression, release, and regulation of neutrophil-derived cytokines. It also highlights examples illustrating the potential implications of neutrophil-derived cytokines according to recent observations made in humans and/or in experimental animal models.
Bone marrow-derived mesenchymal stromal cells (BMMSCs) are stromal precursors endowed with extensive immunomodulative properties. In this study, we aimed to assess whether Toll-like receptor-3 (TLR3)-and TLR4-activated BM-MSC influence human neutrophil (PMN) responses under coculture conditions. We show that TLR3 triggering by polyinosinic:polycytidylic acid dramatically amplifies, in a more significant manner than TLR4 triggering by lipopolysaccharide, the antiapoptotic effects that resting BM-MSC constitutively exert on PMN under coculture conditions, preserving a significant fraction of viable and functional PMN up to 72 hours. In addition, TLR3-and TLR4-activated BM-MSC enhance respiratory burst ability and CD11b expression by PMN. The coculture in the absence of cell contact and the incubation of PMN in supernatants harvested from TLR3-and TLR4-activated BM-MSC yield comparable results in terms of increased survival and immunophenotypic changes, thus suggesting the involvement of endogenous soluble factors. Neutralizing experiments reveal that the biological effects exerted on PMN by TLR3-activated BM-MSC are mediated by the combined action of interleukin 6, interferon-b (IFN-b), and granulocyte macrophage colony-stimulating factor (GM-CSF), while those exerted by TLR4-activated BM-MSC mostly depend on GM-CSF. MSC isolated from thymus, spleen, and subcutaneous adipose tissue behaves similarly. Finally, the effects exerted by TLR3-or TLR4-stimulated BM-MSC on PMN are conserved even after the previous priming of BM-MSC with IFN-c and tumor necrosis factor-a. Our data highlight a novel mechanism by which MSC sustain and amplify the functions of PMN in response to TLR3-and TLR4-triggering and may consequently contribute to inflammatory disorders. STEM CELLS
The outcome of dendritic cell (DC) presentation of P815AB, a tolerogenic tumor/self peptide, depends on a balance between the respective immunogenic and tolerogenic properties of myeloid (CD8α−) and lymphoid (CD8α+) DC. We have previously shown that CD8− DC can be primed by IL-12 to overcome inhibition by the CD8+ subset and initiate immunogenic presentation in vivo when the two types of peptide-pulsed DC are cotransferred into recipient hosts. IFN-γ enhances the inhibitory activity of CD8+ DC on Ag presentation by the other subset, blocking the ability of IL-12-treated CD8− DC to overcome suppression. We report here that CD40 ligation on lymphoid DC ablated their inhibitory function on Ag presentation as well as IFN-γ potentiation of the effect. CD40 modulation of IFN-γ action on lymphoid DC involved a reduction in IFN-γR expression and tryptophan-degrading ability. This effect was accompanied in vitro by an impaired capacity of the CD40-modulated and IFN-γ-treated DC to initiate T cell apoptosis. In vivo, not only did CD40 triggering on lymphoid DC abrogate their tolerogenic activity, but it also induced the potential for immunogenic presentation of P815AB. Importantly, a pattern similar to P815AB as well as CD40 modulation of lymphoid DC function were observed on testing reactivity to NRP, a synthetic peptide mimotope recognized by diabetogenic CD8+ T cells in nonobese diabetic mice.
It is increasingly evident that neutrophils are able to cross-talk with other leukocytes to shape ongoing inflammatory and immune responses. In this study, we analyzed whether human NK cells may influence the survival and activation of neutrophils under co-culture conditions. We report that NK cells exposed to either IL-15 or IL-18 alone strongly protect the survival of neutrophils via the release of IFNγ and granulocyte macrophage colony-stimulating factor (GM-CSF) plus IFNγ, respectively, and cause a slight up-regulation of neutrophil CD64 and CD11b expression. In comparison, NK cells exposed to both IL-15 and IL-18 show a lesser ability to increase the survival of neutrophils but can more potently up-regulate CD64 and CD11b expression, as well as induce the de novo surface expression of CD69, in neutrophils. Analysis of the events occurring in neutrophil/NK co-cultures exposed to IL-15 plus IL-18 revealed that (i) neutrophil survival is positively affected by NK-derived GM-CSF but negatively influenced by a CD18-dependent neutrophil/NK contact, (ii) NK-derived IFNγ is almost entirely responsible for the induction of CD64, (iii) both soluble factors (primarily GM-CSF) and direct cell-cell contact up-regulate CD11b and CD69 and (iv) NK-derived GM-CSF induces the expression of biologically active heparin-binding EGF-like growth factor (HB-EGF) in neutrophils. Finally, we demonstrate that NK cells can also express HB-EGF when stimulated with either IL-2 or IL-15, yet independently of endogenous GM-CSF. Altogether, our results define a novel interaction within the innate immune system whereby NK cells, by directly modulating neutrophil functions, might contribute to the pathogenesis of inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.