The changes in the surface wettability of many materials are receiving increased attention in recent years. It is not too hard to fabricate resistant hydrophobic surfaces through products bearing both hydrophobic and reactive hydrophilic end groups. More challenging is obtaining resistant nonwetting surfaces through noncovalent reversible bonds. In this work, a fluorinated oligo(ethylenesuccinamide), soluble in solvent benign for operators and environment, has been synthesized. It contains two opposite functional groups (perfluoropolyether segments and amidic groups) (SC2-PFPE) that provide water repellency while hydrophilicity is retained. Its performance has been tested on porous calcarenite and investigated by magnetic resonance imaging, water capillary absorption, and vapor diffusivity tests. The results demonstrate that SC2-PFPE modifies the wettability of porous substrates in a drastic and durable way and reduces the vapor condensation inside the pore space due to the perfluoropolyether segments that act at the air/surface interface.
Oligoamides based on natural raw materials, l-lysine and l-tartaric acid, were synthesized using one-pot processes. A l-lysine diketopiperazine structure was obtained with good selectivity without protection/deprotection steps.
Allyl saccharide/vinyl copolymers were synthesized using renewable feedstocks (α,α′-trehalose and d-glucose) to obtain ‘green monomers’. Properly designed synthetic procedures were used to obtain copolymers with high purity and without protection/deprotection steps in agreement with the principles of green chemistry and industrial sustainability. The use of saccharide derivatives as monomers allowed products to be obtained that showed high affinity and compatibility for the cellulosic substrates, like paper or wood, and that were suitable for applications like adhesion or consolidation in the field of cultural heritage. All reaction products were characterized by FT-IR and NMR spectroscopies and SEC analyses, while thermal properties were evaluated by DSC analyses.
The protection of stone cultural assets is related to the transformation of the surface characteristic from hydrophilic to hydrophobic/superhydrophobic through the application of a coating. The suitability of a coating depends not only on its capability to dramatically change the surface wettability, but also on other parameters such as the modification of kinetics of water absorption, the permanence of vapor diffusivity, the resistance of the coating to aging and the low volatile organic compound emissions during its application. In this work, an oligo(ethylensuccinamide) containing low molecular pendant perfluoropolyether segments (SC2-PFPE) and soluble in environmentally friendly solvents was tested as a protective agent for historic stone artifacts. Magnetic resonance imaging and relaxometry were employed to evaluate the effects of the surface wettability change, to follow the water diffusion inside the rock and to study the porous structure evolution after the application of SC2-PFPE. A sun-like irradiation test was used to investigate the photo-stability of the product. The results demonstrate that the highly photo-stable SC2-PFPE minimizes the surface wettability of the stone by modifying the water sorptivity without significantly affecting its porous structure and vapor diffusivity. The improved performance of SC2-PFPE in comparison to other traditional coatings makes it a potential candidate as an advanced coating for stone cultural heritage protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.