The vaginal microbiota of healthy women is dominated by lactobacilli, which exerts important health-promoting effects to the host. In the present study, 261 lactobacilli isolated from vagina of healthy women were screened for their potential probiotic characteristics. Safety features (haemolytic activity, antibiotic susceptibility, bile salt hydrolase activity) and functional properties (resistance to low pH and bile salts, lysozyme tolerance, gastrointestinal survival, antagonistic activity against pathogens, hydrophobicity, auto-aggregation, and co-aggregation abilities, hydrogen peroxide production, biofilm formation, exopolysaccharide production, adhesion capacity to both normal human vagina epithelial cells and Caco-2 epithelial cells, and lactic acid production) were in depth evaluated. Seven strains, identified as Lactobacillus rhamnosus , Lactobacillus helveticus and Lactobacillus salivarius fulfilled the criteria described above. Therefore, the vaginal ecosystem represents a suitable source of probiotic candidates that could be used in new functional formulates for both gastrointestinal and vaginal eubiosis.
Nocellara Etnea is one of the main Sicilian cultivars traditionally used to produce both olive oil and naturally fermented table olives. In the present study, the effect of different salt concentrations on physico-chemical, microbiological, sensorial, and volatile organic compounds (VOCs) formation was evaluated in order to obtain functional Nocellara Etnea table olives. The experimental design consisted of 8 treatments as follow: fermentations at 4, 5, 6, and 8% of salt with (E1-E4 samples) and without (C1-C4 samples) the addition of starters. All the trials were carried out at room temperature (18 ± 2°C) and monitored for an overall period of 120 d. In addition, the persistence of the potential probiotic Lactobacillus paracasei N24 at the end of the process was investigated. Microbiological data revealed the dominance of lactic acid bacteria (LAB), starting from the 7th d of fermentation, and the reduction of yeasts and enterobacteria in the final product inoculated with starters. VOCs profile highlighted a high amount of aldehydes at the beginning of fermentation, which significantly decreased through the process and a concomitant increase of alcohols, acids, esters, and phenols. In particular, esters showed an occurrence percentage higher in experimental samples rather than in control ones, contributing to more pleasant flavors. Moreover, acetic acid, ethanol, and phenols, which often generate off-flavors, were negatively correlated with mesophilic bacteria and LAB. It is interesting to note that salt content did not affect the performances of starter cultures and slightly influenced the metabolome of table olives. Sensory data demonstrated significant differences among samples registering the highest overall acceptability in the experimental sample at 5% of NaCl. The persistence of the L. paracasei N24 strain in experimental samples, at the end of the process, revealed its promising perspectives as starter culture for the production of functional table olives with reduced salt content.
In the present study, the β-glucosidase positive strain Lactobacillus plantarum F3. 3 was used as starter during the fermentation of Sicilian table olives (Nocellara Etnea cultivar) at two different salt concentrations (5 and 8%), in order to accelerate the debittering process. The latter was monitored through the increase of hydroxytyrosol compound. In addition, the potential probiotic Lactobacillus paracasei N24 strain was added after 60 days of fermentation. Un-inoculated brine samples at 5 and 8% of salt were used as control. The fermentation was monitored till 120 days through physico-chemical and microbiological analyses. In addition, volatile organic compounds and sensorial analyses were performed during the process and at the end of the fermentation, respectively. Lactic acid bacteria and yeasts were, in depth, studied by molecular methods and the occurrence of the potential probiotic N24 strain in the final products was determined. Results highlighted that inoculated brines exhibited a higher acidification and debittering rate than control ones. In addition, inoculated brines at 5% of salt exhibited higher polyphenols (hydoxytyrosol, tyrosol, and verbascoside) content compared to samples at 8% of NaCl, suggesting a stronger oleuropeinolytic activity of the starter at low salt concentration. Lactobacilli and yeasts dominated during the fermentation process, with the highest occurrence of L. plantarum and Wickerhamomyces anomalus, respectively. Moreover, the potential probiotic L. paracasei N24 strain was able to survive in the final product. Hence, the sequential inoculum of beta-glucosidase positive and potential probiotic strains could be proposed as a suitable technology to produce low salt Sicilian table olives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.