Background Hairy cell leukemia (HCL) is a well defined clinico-pathological entity whose underlying genetic lesion is still obscure. Methods We searched for HCL-associated mutations by massively parallel sequencing of the whole exome of leukemic and matched normal mononuclear cells purified from the peripheral blood of one patient with HCL. Results Whole exome sequencing identified 5 missense somatic clonal mutations that were confirmed at Sanger sequencing, including a heterozygous V600E mutation involving the BRAF gene. Since the BRAF V600E mutation is oncogenic in other tumors, further analyses were focused on this genetic lesion. Sanger sequencing detected mutated BRAF in 46/46 additional HCL patients (47/47 including the index case; 100%). None of the 193 peripheral B-cell lymphomas/leukemias other than HCL that were investigated carried the BRAF V600E mutation, including 36 cases of splenic marginal zone lymphomas and unclassifiable splenic lymphomas/leukemias. Immunohistological and Western blot studies showed that HCL cells express phospho-MEK and phospho-ERK (the downstream targets of the BRAF kinase), indicating a constitutive activation of the RAF-MEK-ERK mitogen-activated protein kinase pathway in HCL. In vitro incubation of BRAF-mutated primary leukemic cells from 5 HCL patients with PLX-4720, a specific inhibitor of active BRAF, led to marked decrease of phosphorylated ERK and MEK. Conclusions The BRAF V600E mutation was present in all HCL patients investigated. This finding may have relevant implications for the pathogenesis, diagnosis and targeted therapy of HCL (Funded by the Associazione Italiana Ricerca Cancro and others).
We recently identified aberrant cytoplasmic expression of nucleophosmin (NPM) as the immunohistochemical marker of a large subgroup of acute myeloid leukemia (AML) (about one-third of adult AML) that is characterized by normal karyotype and mutations occurring at the exon-12 of the NPM gene. In this paper, we have elucidated the molecular mechanism underlying the abnormal cytoplasmic localization of NPM. All 29 AMLassociated mutated NPM alleles so far identified encode abnormal proteins which have acquired at the C-terminus a nuclear export signal (NES) motif and lost both tryptophan residues 288 and 290 (or only the residue 290) which determine nucleolar localization. We show for the first time that both alterations are crucial for NPM mutant export from nucleus to cytoplasm. In fact, the cytoplasmic accumulation of NPM is blocked by leptomycin-B and ratjadones, specific exportin-1/Crm1-inhibitors, and by reinsertion of tryptophan residues 288 and 290, which respectively relocate NPM mutants in the nucleoplasm and nucleoli. NPM leukemic mutants in turn recruit the wild-type NPM from nucleoli to nucleoplasm and cytoplasm. These findings indicate that potential therapeutic strategies aimed to retarget NPM to its physiological sites will have to overcome 2 obstacles, the new NES motif and the mutated tryptophan(s) at the NPM mutant C-terminus. IntroductionIn acute myeloid leukemia (AML), a clinically and molecularly heterogeneous disease, 1 recurrent cytogenetic abnormalities help define subgroups with different prognosis, and identify patients who might benefit from targeted therapies. 1 However, almost half adult AMLs display normal karyotype at conventional cytogenetics, 2 and the clinical and molecular features of this large subgroup of patients are still poorly understood. [3][4][5][6][7] We recently observed that about 60% of adult AML with normal karyotype display aberrant cytoplasmic expression of nucleophosmin (NPM). 8 A multifunctional protein [9][10][11][12][13][14][15] that characteristically shuttles between the nucleus and the cytoplasm, 16 NPM is found mainly in the nucleolus, [17][18][19] where it is one of the most abundant of the approximately 700 proteins so far identified by proteomic techniques. 20 Cytoplasmic NPM identifies a distinct subgroup of AML, named NPMc ϩ AML, that accounts for about 35% of all adult AML and is characterized by wide morphologic spectrum, multilineage involvement, high frequency of FLT3-ITD mutations, absence of CD34, and relatively good response to induction therapy. 8 NPMc ϩ AML also has a distinct gene expression profile 21 and carries mutations in exon-12 of the NPM gene 8 that serve as predictor of favorable prognosis in AML with normal karyotype, [22][23][24] and as a marker for monitoring of minimal residual disease. 25 In spite of the close association between the aberrant cytoplasmic expression of NPM and exon-12 NPM mutations, 8 the mechanism underlying cytoplasmic accumulation of NPM in leukemic cells and its interference with wild-type NPM protein remaine...
Dissecting the pathogenesis of classical Hodgkin lymphoma (cHL), a common cancer in young adults, remains challenging because of the rarity of tumor cells in involved tissues (usually <5%). Here, we analyzed the coding genome of cHL by microdissecting tumor and normal cells from 34 patient biopsies for a total of ∼50 000 singly isolated lymphoma cells. We uncovered several recurrently mutated genes, namely, (32% of cases), (24%), (18%), and (16%), and document the functional role of mutant STAT6 in sustaining tumor cell viability. Mutations of genetically and functionally cooperated with disruption of, a JAK-STAT pathway inhibitor, to promote cHL growth. Overall, 87% of cases showed dysregulation of the JAK-STAT pathway by genetic alterations in multiple genes (also including ,, ,, and ), attesting to the pivotal role of this pathway in cHL pathogenesis and highlighting its potential as a new therapeutic target in this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.