Diffuse large B-cell lymphoma (DLBCL) can be divided into prognostically important subgroups with germinal center Bcell-like (GCB), activated B-cell-like (ABC), and type 3 gene expression profiles using a cDNA microarray. Tissue microarray (TMA) blocks were created from 152 cases of DLBCL, 142 of which had been successfully evaluated by cDNA microarray (75 GCB, 41 ABC, and 26 type 3). Sections were stained with antibodies to CD10, bcl-6, MUM1, FOXP1, cyclin D2, and bcl-2. Expression of bcl-6 (P < .001) or CD10 (P ؍ .019) was associated with better overall survival (OS), whereas expression of MUM1 (P ؍ .009) or cyclin D2 (P < .001) was associated with worse OS. Cases were subclassified using CD10, bcl-6, and MUM1 expression, and 64 cases (42%) were considered GCB and 88 cases (58%) non-GCB. The 5-year OS for the GCB group was 76% compared with only 34% for the non-GCB group (P < .001), which is similar to that reported using the cDNA microarray. Bcl-2 and cyclin D2 were adverse predictors in the non-GCB group. In multivariate analysis, a high International Prognostic Index score (3-5) and the non-GCB phenotype were independent adverse predictors (P < .0001). In summary, immunostains can be used to determine the GCB and non-GCB subtypes of DLBCL and predict survival similar to the cDNA microarray. IntroductionDiffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma and accounts for 30% to 40% of new diagnoses. 1,2 However, DLBCL is heterogeneous both clinically and morphologically. Despite the use of anthracycline-based chemotherapy, durable remissions are achieved in only 40% to 50% of patients. 2 Therefore, it is important to identify at diagnosis those patients who may benefit from more aggressive or experimental therapies.Currently, the prognosis of patients with DLBCL is estimated using the clinical parameters of the International Prognostic Index (IPI). 3 However, these clinical parameters reflect a mixture of underlying biologic or genetic differences. In an attempt to elucidate these underlying factors, the prognostic value of numerous individual proteins has been studied by immunoperoxidase and molecular techniques. However, these studies have yielded conflicting results, and none have been validated in a large prospective trial. Therefore, in contrast to the IPI, these individual markers are generally not used in clinical practice for selecting therapy or predicting prognosis.Using a cDNA microarray, DLBCL can be divided into prognostically significant subgroups with germinal center B-celllike (GCB), activated B-cell-like (ABC), or type 3 gene expression profiles. 35,36 The GCB group has a significantly better survival than the ABC group. The type 3 group is heterogeneous and not well defined, but has a poor outcome similar to the ABC group. Another study using an oligonucleotide array has demonstrated that DLBCL can be divided into 2 molecularly distinct populations (cured and fatal/refractory). 37 Because this technology is expensive and not generally available, a sim...
A murine monoclonal antibody specific for calf intestinal alkaline phosphatase has been prepared and used in an unlabeled antibody bridge technique for labeling monoclonal antibodies. This procedure-the alkaline phosphatase monoclonal anti-alkaline phosphatase (APAAP) method-gives excellent immunocytochemical labeling of tissue sections and cell smears, comparable in clarity and intensity to that achieved with immunoperoxidase labeling. If the enzyme label is developed with a naphthol salt as a coupling agent and Fast Red or hexazotized new fuchsin as a capture agent, a vivid red reaction product is obtamed which is very easily detected by the human eye. For this reason the APAAP technique was found particularly suitable for labeling cell smears (for both cytoplasmic and surface-membrane antigens) and for detecting low num-APAAP 220 CORDELL ET AL APAAP STAINING OF MONOCLONAL ANTIBODIES
NPM1 is a crucial gene to consider in the context of the genetics and biology of cancer. NPM1 is frequently overexpressed, mutated, rearranged and deleted in human cancer. Traditionally regarded as a tumour marker and a putative proto-oncogene, it has now also been attributed with tumour-suppressor functions. Therefore, NPM can contribute to oncogenesis through many mechanisms. The aim of this review is to analyse the role of NPM in cancer, and examine how deregulated NPM activity (either gain or loss of function) can contribute to tumorigenesis.
IntroductionA viable option for high-risk, acute leukemia patients without matched donors is hematopoietic stem cell transplantation (HSCT) from human leukocyte antigen (HLA)-haploidentical 3-locimismatched family members who were readily available for almost all patients. 1,2 Until the 1990s, full-haplotype-mismatched, T cell-replete transplantations were unsuccessful because donoralloreactive T cells triggered a high incidence of severe graft-versushost disease (GVHD) despite posttransplantation immune suppression. 3,4 The breakthrough came with the use of a megadoses of extensively ex vivo T cell-depleted peripheral blood hematopoietic progenitor cells and a highly myeloablative conditioning regimen containing antithymocyte globulin (ATG), which exerts additional T-cell depletion in vivo. This approach ensures a high rate of primary engraftment in the absence of GVHD, 5 with more than 40% long-term event-free survival and excellent quality of life. 1,2 However, extensive ex vivo and in vivo T-cell depletion delays the recovery of immune responses against pathogens, leading to a high incidence of life-threatening infections. 1,2 Strategies to hasten posttransplantation immune reconstitution without triggering GVHD have included infusion of donor T cells after engineering with a suicide gene, 6 photodynamic purging, 7 and the use of an anti-CD25 monoclonal antibody (mAb) 8 to remove alloreactive cells. An alternative strategy might be based on donor CD4 ϩ CD25 ϩ T-regulatory cells (Tregs). In murine models of HSCT across major histocompatibility complex barriers, CD4 ϩ CD25 ϩ Tregs suppressed lethal GVHD 9 and favored posttransplantation immune reconstitution when coinfused with conventional T cells (Tcons). 10 The main obstacle to clinical application of human Tregs is their paucity in the peripheral blood. Although ex vivo-expanded polyclonal 11 or recipient-specific Tregs 12 were proposed to circumvent this potential barrier, we opted for closed, automated immunoselection 13 of naturally occurring Tregs. In the present study, for the first time in humans, we show that the early infusion of freshly isolated donor Tregs followed by Tcons at the time of full-haplotypemismatched HSCT prevented GVHD while favoring Tconmediated posttransplantation immune reconstitution. MethodsStudy design, conditioning regimen, stem cell mobilization, and supportive careIn 2008, the Umbria Regional Hospital Ethics Committee (CEAS Umbria) approved the protocol entitled "Adoptive Immunotherapy with Natural Regulatory T cells (Treg) and Effector T Cells in Allogeneic Hematopoietic Stem Cell Transplantation from 2-3 Loci Mismatched HLA-Haploidentical Family Donors for Patients with High Risk Haematologic Malignancies" (Protocol No 01/08). Written informed consent was obtained for all patients and donors in accordance with the Declaration of Helsinki. Inclusion criteria were: acute myeloid leukemia (AML) or acute lymphoid leukemia (ALL) in remission at high risk of relapse; acute leukemia with primary induction failure, in chemoresist...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.