Cell adaptation to hypoxia (Hyp) requires activation of transcriptional programs that coordinate expression of genes involved in oxygen delivery (via angiogenesis) and metabolic adaptation (via glycolysis). Here, we describe that oxygen availability is a determinant parameter in the setting of chemotactic responsiveness to stromal-derived factor 1 (CXCL12). Low oxygen concentration induces high expression of the CXCL12 receptor, CXC receptor 4 (CXCR4), in different cell types (monocytes, monocyte-derived macrophages, tumor-associated macrophages, endothelial cells, and cancer cells), which is paralleled by increased chemotactic responsiveness to its specific ligand. CXCR4 induction by Hyp is dependent on both activation of the Hyp-inducible factor 1 α and transcript stabilization. In a relay multistep navigation process, the Hyp–Hyp-inducible factor 1 α–CXCR4 pathway may regulate trafficking in and out of hypoxic tissue microenvironments.
Tumor-associated macrophages (TAM) are a major inflammatory infiltrate in tumors and a major component of the protumor function of inflammation. TAM in established tumors generally have an M2 phenotype with defective production of interleukin-12 (IL-12) and high IL-10. Here, we report that defective responsiveness of TAM from a murine fibrosarcoma and human ovarian carcinoma to M1 activation signals was associated with a massive nuclear localization of the p50 nuclear factor-KB (NF-KB) inhibitory homodimer. p50 overexpression inhibited IL-12 expression in normal macrophages. TAM isolated from p50 À/À mice showed normal production of M1 cytokines, associated with reduced growth of transplanted tumors. Bone marrow chimeras showed that p50 inactivation in hematopoietic cells was sufficient to result in reduced tumor growth. Thus, p50 NF-KB overexpression accounts for the inability of TAM to mount an effective M1 antitumor response capable of inhibiting tumor growth.
IL-12 is a central cytokine in the activation of inflammation and immunity and in the generation of Th1-type responses. Tumor-associated macrophages (TAM) from mouse and human tumors showed defective production of IL-12. Defective IL-12 production was associated with lack of p50/p65 NF-κB activation. TAM produced increased amounts of the immunosuppressive cytokine IL-10. Abs against IL-10 restored the defective capacity of TAM to produce IL-12. Our data suggest that during tumor growth an IL-10-dependent pathway of diversion of macrophage function can be activated into the tumor microenvironment and results in the promotion of the IL-10+ IL-12− phenotype of TAM. Blocking IL-10, as well as other immunosuppressive cytokines present in the tumor microenvironment, such as TGF-β, may complement therapeutic strategies aimed at activating type I antitumor immune responses.
We investigated the capacity of human islets to produce monocyte chemoattractant protein-1 (MCP-1). Primary cultures of pancreatic islets expressed and secreted MCP-1, as determined by Northern blot, immunohistochemistry, in situ hybridization, and enzyme-linked immunosorbent assay. The produced MCP-1 was biologically active as it attracted monocytes in chemotaxis assay, and chemotactic activity was almost abrogated by a neutralizing anti-MCP-1 monoclonal antibody.
Expression of MCP-1 was increased by primary inflammatory cytokines (interleukin-1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.