Following the constantly increasing adoption of affective computing based solutions, this paper investigates the feasibility of multilingual anger identification. To this end, we formed such a corpus by suitably combining seven different datasets representing five different languages, i.e. English, German, Italian, Urdu, and Persian. After analyzing the diverse characteristics of the datasets, we designed four classification algorithms, namely Support Vector Machine, Decision Treebased Bagging scheme, Convolutional Neural Network, and Convolutional Recurrent Neural Network. Such classification mechanisms are trained on appropriate features extracted from time and/or frequency domains, while speech data have been balanced considering every diverse characteristic incorporated in the datasets (language, sex, acted, etc.). Our findings render multilingual anger identification feasible since the proposed audio pattern recognition methodology based on Mel-spectrograms and CRNN achieved quite satisfactory identification rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.