For regular parametric problems, we show how median centering of the maximum likelihood estimate can be achieved by a simple modification of the score equation. For a scalar parameter of interest, the estimator is equivariant under interest respecting parameterizations and third-order median unbiased. With a vector parameter of interest, componentwise equivariance and thirdorder median centering are obtained. Like Firth's (1993, Biometrika) implicit method for bias reduction, the new method does not require finiteness of the maximum likelihood estimate and is effective in preventing infinite estimates. Simulation results for continuous and discrete models, including binary and beta regression, confirm that the method succeeds in achieving componentwise median centering and in solving the infinite estimate problem, while keeping comparable dispersion and the same approximate distribution as its main competitors.
We show how modified profile likelihood methods, developed in the statistical literature, may be effectively applied to estimate the structural parameters of econometric models for panel data, with a remarkable reduction of bias with respect to the ordinary likelihood methods. The implementation of these methods is illustrated in detail for certain static and dynamic models which are commonly used in economic applications. We consider, in particular, the truncated linear regression model, the first order autoregressive model, the (static and dynamic) logit model, and the (static and dynamic) probit model. Differently from static models, dynamic models include the lagged response variable among the regressors. For each of these models, we report the results of simulation studies showing the good behaviour of the proposed estimation methods, even with respect to an ideal, although infeasible, procedure.The methods are made available through an R package.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.