Transglutaminase type 2 (TG2) is both a protein cross-linking enzyme and a cell adhesion molecule with an elusive unconventional secretion pathway. In normal conditions, TG2-mediated modification of the extracellular matrix modulates cell motility, proliferation and tissue repair, but under continuous cell insult, higher expression and elevated extracellular trafficking of TG2 contribute to the pathogenesis of tissue scarring. In search of TG2 ligands that could contribute to its regulation, we characterized the affinity of TG2 for heparan sulfate (HS) and heparin, an analogue of the chains of HS proteoglycans (HSPGs). By using heparin/HS solid-binding assays and surface plasmon resonance we showed that purified TG2 has high affinity for heparin/HS, comparable to that for fibronectin, and that cell-surface TG2 interacts with heparin/HS. We demonstrated that cell-surface TG2 directly associates with the HS chains of syndecan-4 without the mediation of fibronectin, which has affinity for both syndecan-4 and TG2. Functional inhibition of the cell-surface HS chains of wild-type and syndecan-4-null fibroblasts revealed that the extracellular cross-linking activity of TG2 depends on the HS of HSPG and that syndecan-4 plays a major but not exclusive role. We found that heparin binding did not alter TG2 activity per se. Conversely, fibroblasts deprived of syndecan-4 were unable to effectively externalize TG2, resulting in its cytosolic accumulation. We propose that the membrane trafficking of TG2, and hence its extracellular activity, is linked to TG2 binding to cell-surface HSPG.
Transglutaminase type 2 (TG2) is an extracellular matrix crosslinking enzyme with a pivotal role in kidney fibrosis. The interaction of TG2 with the heparan sulfate proteoglycan syndecan-4 (Sdc4) regulates the cell surface trafficking, localization, and activity of TG2 in vitro but remains unstudied in vivo. We tested the hypothesis that Sdc4 is required for cell surface targeting of TG2 and the development of kidney fibrosis in CKD. Wild-type and Sdc4-null mice were subjected to unilateral ureteric obstruction and aristolochic acid nephropathy (AAN) as experimental models of kidney fibrosis. Analysis of renal scarring by Masson trichrome staining, kidney hydroxyproline levels, and collagen immunofluorescence demonstrated progressive fibrosis associated with increases in extracellular TG2 and TG activity in the tubulointerstitium in both models. Knockout of Sdc-4 reduced these effects and prevented AAN-induced increases in total and active TGF-b1. In wild-type mice subjected to AAN, extracellular TG2 colocalized with Sdc4 in the tubular interstitium and basement membrane, where TG2 also colocalized with heparan sulfate chains. Heparitinase I, which selectively cleaves heparan sulfate, completely abolished extracellular TG2 in normal and diseased kidney sections. In conclusion, the lack of Sdc4 heparan sulfate chains in the kidneys of Sdc4-null mice abrogates injury-induced externalization of TG2, thereby preventing profibrotic crosslinking of extracellular matrix and recruitment of large latent TGF-b1. This finding suggests that targeting the TG2-Sdc4 interaction may provide a specific interventional strategy for the treatment of CKD.
Background: Genetically modified mice are used to investigate disease and assess potential interventions. However, research into kidney fibrosis is hampered by a lack of models of chronic kidney disease (CKD) in mice. Recently, aristolochic acid nephropathy (AAN), characterised by severe tubulointerstitial fibrosis, has been identified as a cause of end stage kidney disease and proposed as a model of CKD. Published studies have used various dosing regimens, species and strains, with variable outcomes. Therefore, we aimed to develop a standardised protocol to develop tubulointerstitial fibrosis using pure aristolochic acid I (AAI) in C57BL/6 mice. Methods: AAI dose optimisation was performed by intraperitoneal injection of AAI at varying dose, frequency and duration. Kidney function was assessed by serum creatinine. Fibrosis was quantified by hydroxyproline levels and Masson’s Trichrome staining. Specific collagens were measured by immunofluorescent staining. Results: Single doses of AAI of >10 mg/kg caused acute kidney failure and death. Lower doses of 2.5 mg/kg needed to be administrated more than weekly to cause significant fibrosis. 3 mg/kg once every 3 days for 6 weeks followed by a disease development time of 6 weeks after AAI led to reduced kidney weight and function. Substantial tubulointerstitial fibrosis occurred, with males more severely affected. Increased deposition of collagen I, III and IV contributed to fibrosis, with collagen III and IV higher in males. Conclusions: AAN can be induced in C57BL/6 mice. The regimen of 3 mg/kg every 3 days for 6 weeks followed by 6 weeks of disease development time gives substantial tubulointerstitial fibrosis with lesions similar to those in humans.
Increased export of transglutaminase-2 (TG2) by tubular epithelial cells (TECs) into the surrounding interstitium modifies the extracellular homeostatic balance, leading to fibrotic membrane expansion. Although silencing of extracellular TG2 ameliorates progressive kidney scarring in animal models of CKD, the pathway through which TG2 is secreted from TECs and contributes to disease progression has not been elucidated. In this study, we developed a global proteomic approach to identify binding partners of TG2 responsible for TG2 externalization in kidneys subjected to unilateral ureteric obstruction (UUO) using TG2 knockout kidneys as negative controls. We report a robust and unbiased analysis of the membrane interactome of TG2 in fibrotic kidneys relative to the entire proteome after UUO, detected by SWATH mass spectrometry. The data have been deposited to the ProteomeXchange with identifier PXD008173. Clusters of exosomal proteins in the TG2 interactome supported the hypothesis that TG2 is secreted by extracellular membrane vesicles during fibrosis progression. In established TEC lines, we found TG2 in vesicles of both endosomal (exosomes) and plasma membrane origin (microvesicles/ectosomes), and TGF-b1 stimulated TG2 secretion. Knockout of syndecan-4 (SDC4) greatly impaired TG2 exosomal secretion. TG2 coprecipitated with SDC4 from exosome lysate but not ectosome lysate. Ex vivo, EGFP-tagged TG2 accumulated in globular elements (blebs) protruding/retracting from the plasma membrane of primary cortical TECs, and SDC4 knockout impaired bleb formation, affecting TG2 release. Through this combined in vivo and in vitro approach, we have dissected the pathway through which TG2 is secreted from TECs in CKD. Significance StatementSecretion of the matrix crosslinking enzyme transglutaminase-2 (TG2) from tubular epithelial cells has been shown to contribute to fibrotic remodeling, a primary pathologic process in CKD. To discover the pathway for secretion of TG2, a comparative proteomic strategy was developed. Proteins that interact with TG2 were identified by TG2 immunoprecipitation from wild-type and TG2 knockout fibrotic kidney membranes followed by SWATH mass spectroscopy. The TG2 interactome was enriched in extracellular vesicle proteins, suggesting that TG2 is secreted in exosomes. Studies in cultured tubular epithelial cells support this conclusion and suggest that TG2 is a binding cargo of syndecan-4. The finding of TG2 in the urine of patients with CKD raises the possibility that block of vesicular TG2 could reduce TG2-driven matrix accumulation and diminish fibrosis.
Background: Extracellular transglutaminase-2 binds heparan sulfate and has adhesive/signaling pro-fibrotic functions.Results: Two clusters of basic residues, distal in the linear sequence of transglutaminase-2, are required for heparin binding and cell adhesion.Conclusion: Folding of the transglutaminase-2 protein brings basic residues in close proximity to form a functional heparin binding domain.Significance: Mapping the heparan sulfate binding domain will enhance design of transglutaminase-2 inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.