STUDY QUESTION Can high resolution array-CGH analysis on a cohort of women showing a primary ovarian insufficiency (POI) phenotype in young age identify copy number variants (CNVs) with a deleterious effect on ovarian function? SUMMARY ANSWER This approach has proved effective to clarify the role of CNVs in POI pathogenesis and to better unveil both novel candidate genes and pathogenic mechanisms. WHAT IS KNOWN ALREADY POI describes the progression toward the cessation of ovarian function before the age of 40 years. Genetic causes are highly heterogeneous and despite several genes being associated with ovarian failure, most of genetic basis of POI still needs to be elucidated. STUDY DESIGN, SIZE, DURATION The current study included 67 46,XX patients with early onset POI (<19 years) and 134 control females recruited between 2012 and 2016 at the Medical Cytogenetics and Molecular Genetics Lab, IRCCS Istituto Auxologico Italiano. PARTICIPANTS/MATERIALS, SETTING, METHODS High resolution array-CGH analysis was carried out on POI patients’ DNA. Results of patients and female controls were analyzed to search for rare CNVs. All variants were validated and subjected to a gene content analysis and disease gene prioritization based on the present literature to find out new ovary candidate genes. Case-control study with statistical analysis was carried out to validate our approach and evaluate any ovary CNVs/gene enrichment. Characterization of particular CNVs with molecular and functional studies was performed to assess their pathogenic involvement in POI. MAIN RESULTS AND THE ROLE OF CHANCE We identified 37 ovary-related CNVs involving 44 genes with a role in ovary in 32 patients. All except one of the selected CNVs were not observed in the control group. Possible involvement of the CNVs in POI pathogenesis was further corroborated by a case-control analysis that showed a significant enrichment of ovary-related CNVs/genes in patients ( P = 0.0132; P = 0.0126). Disease gene prioritization identified both previously reported POI genes (e.g. BMP15 , DIAPH2 , CPEB1 , BNC1 ) and new candidates supported by transcript and functional studies, such as TP63 with a role in oocyte genomic integrity and VLDLR which is involved in steroidogenesis. LARGE SCALE DATA ClinVar database ( ); accession numbers SCV000787656 to SCV000787743. LIMITATIONS, REASONS FOR CAUTION This is a descriptive analysis for almost all of the CNVs identified. Inheritance studies of CNVs in some non-familial sporadic cases was not performed as the parents’ DNA samples were not available. Addionally, RT-qP...
Rubinstein-Taybi syndrome (RSTS) is a rare neurodevelopmental disorder characterized by distinctive facial features, growth retardation, broad thumbs and toes and mild to severe intellectual disability, caused by heterozygous mutations in either CREBBP or EP300 genes, encoding the homologous CBP and p300 lysine-acetyltransferases and transcriptional coactivators. No RSTS in vitro induced Pluripotent Stem Cell (iPSC)-neuronal model is available yet to achieve mechanistic insights on cognitive impairment of RSTS patients. We established iPSC-derived neurons (i-neurons) from peripheral blood cells of three CREBBP- and two EP300-mutated patients displaying different levels of intellectual disability, and four unaffected controls. Pan neuronal and cortical-specific markers were expressed by all patients' i-neurons. Altered morphology of patients' differentiating neurons, showing reduced branch length and increased branch number, and hypoexcitability of differentiated neurons emerged as potential disease biomarkers. Anomalous neuronal morphology and reduced excitability varied across different RSTS patients' i-neurons. Further studies are needed to validate these markers and assess whether they reflect cognitive and behavioural impairment of the donor patients.
Biallelic mutations in RECQL4 gene, a caretaker of the genome, cause Rothmund-Thomson type-II syndrome (RTS-II) and confer increased cancer risk if they damage the helicase domain. We describe five families exemplifying clinical and allelic heterogeneity of RTS-II, and report the effect of pathogenic RECQL4 variants by in silico predictions and transcripts analyses. Complete phenotype of patients #39 and #42 whose affected siblings developed osteosarcoma correlates with their c.[1048_1049del], c.[1878+32_1878+55del] and c.[1568G>C;1573delT], c.[3021_3022del] variants which damage the helicase domain. Literature survey highlights enrichment of these variants affecting the helicase domain in patients with cancer outcome raising the issue of strict oncological surveillance. Conversely, patients #29 and #19 have a mild phenotype and carry, respectively, the unreported homozygous c.3265G>T and c.3054A>G variants, both sparing the helicase domain. Finally, despite matching several criteria for RTS clinical diagnosis, patient #38 is heterozygous for c.2412_2414del; no pathogenic CNVs out of those evidenced by high-resolution CGH-array, emerged as contributors to her phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.