Endophytes are fungi and bacteria that inhabit plant tissues without causing disease. Endophytes have characteristics that are important for the health of the plant and have been isolated from several plants of economic and medicinal interest but rarely from ornamental plants. The current study isolates and identifies endophytic fungi from the leaves of Pachystachys lutea and evaluates the antagonistic activity of these endophytes as well as cellulase production by the endophytes. Fungi were isolated by fragmentation from surface-disinfected leaves and were identified by the sequencing of the ITS gene and the genes coding for EF 1-α and β-tubulin followed by multilocus sequence analysis. Molecular taxonomic analysis revealed that 78% of the identified fungi belonged to the genus Diaporthe. We also identified strains belonging to the genera Colletotrichum, Phyllosticta, Xylaria, Nemania, and Alternaria. Most of the strains tested were able to inhibit the growth of pathogenic fungi, especially PL09 (Diaporthe sp.), which inhibited the growth of Colletotrichum sp., and PL03 (Diaporthe sp.), which inhibited the growth of Fusarium oxysporum. The production of cellulase ranged from 0.87 to 1.60 μmol/min. Foliar endophytic fungal isolates from P. lutea showed promising results for the in vitro control of plant pathogens and for cellulase production. This paper is the first report on culturable endophytic fungi isolated from the ornamental plant P. lutea.
Endophytic fungi colonize the interior of plant tissues and organs, establishing an intimate mutualistic association with no visible symptoms. The fungi may help protect the plant against herbivores and pathogens, making them potentially useful endophytes in the biological control of diseases and agricultural pests. The biotechnological interest in these organisms has stimulated research related to the bioprospecting of endophytic fungi. Grapevine is among the oldest of plants cultivated by man, with the grape being one of the most highly consumed fruits in the world. Diseases cause significant damage to grape cultures, making their integrated control important to reduce the use of pesticides and, consequently, environmental and human contamination. The rustic species Vitis labrusca L. (Vitaceae), used in the preparation of juices and wines, is highly resistant to fungal diseases. We isolated leaf endophytic fungi of the Bordô and Concord cultivars (V. labrusca L.), which were ordered into 68 and 62 morpho-groups of the Bordô and Concord cultivars, respectively. We used scanning electron microscopy to confirm the presence of endophytes in the leaves. Endophytic diversity was analyzed based on sequencing the ITS1-5.8S-ITS2 region of rDNA, allowing the identification of fungi belonging to genera including Cochliobolus, Bipolaris, Fusarium, Alternaria, Diaporthe, Phoma and Phomopsis. Phylogenetic analysis confirmed the identity of the endophytes. The biotechnological potential of endophytes was tested in vitro for the control of pathogenic fungi of grapevines including Alternaria sp., Sphaceloma sp. and Glomerella sp. Inhibition percentages above 50 % as demonstrated by some isolates demonstrate their potential for biological control.
ABSTRACT. Fungi belonging to the Colletotrichum genus can be categorized as endophytic or phytopathogenic. These fungi can be infected by viruses, termed mycoviruses, which are known to promote hypovirulence in infected fungi. However, there are few studies that have described mycoviral infections of endophytes. The production of secondary metabolites by endophytes with antimicrobial potential in inhibiting numerous pathogens has gained increasing attention. The aim of the current study was to investigate the presence of mycoviruses in endophytic and phytopathogenic fungi of the Colletotrichum genus, as well as to analyze the antimicrobial activity of crude extracts obtained from these samples. To detect the presence of mycoviruses in the samples, dsRNA was extracted, treated with enzymes, and analyzed following electrophoresis in agarose gel. Furthermore, isometric mycoviral particles were observed by transmission electron microscopy. Serial microdilution methodology was used to test crude extracts of Colletotrichum spp for antibacterial activity against Escherichia coli and Staphylococcus aureus, and antifungal activity against Fusarium solani. The results of the molecular and microscopic analyses indicated that a phytopathogenic strain presented infection by mycovirus. The antibacterial activity analysis revealed that the minimum inhibitory concentrations and minimum bactericidal concentrations were low for the fungal extracts of the two endophytes, indicating that these extracts were effective antibacterial agents. However, their antifungal activity against F. solani was not statistically different compared to that of the negative control.
-The objective of this work was to monitor the maintenance of Citrus tristeza virus (CTV) protective isolates stability in selected clones of 'Pêra' sweet orange (Citrus sinensis), preimmunized or naturally infected by the virus, after successive clonal propagations. The work was carried out in field conditions in the north of Paraná State, Brazil. Coat protein gene (CPG) analysis of 33 isolates collected from 16 clones of 'Pêra' sweet orange was performed using single strand conformational polymorphism (SSCP). Initially, the isolates were characterized by symptoms of stem pitting observed in clones. Then viral genome was extracted and used as template for the amplification of CPG by reverse transcription polimerase chain reaction (RTPCR). RTPCR products electrophoretic profiles were analyzed using the Jaccard coefficient and the UPGMA method. The majority of the clones had weak to moderate stem pitting symptoms and its CTV isolates showed alterations in the SSCP profiles. However, the stability of the protective complex has been maintained, except for isolates from two analised clones. Low genetic variability was observed within the isolates during the studied years.Index terms: Citrus sinensis, cross-protection, preimmunization, single strand conformational polymorphism, stem pitting symptoms. Estabilidade de isolados protetores contra Citrus tristeza virus em condições de campoResumo -O objetivo deste trabalho foi monitorar a manutenção da estabilidade de isolados protetores contra Citrus tristeza virus (CTV) em clones selecionados de laranja 'Pêra' (Citrus sinensis) pré-imunizados ou infectados naturalmente pelo vírus, após sucessivas propagações clonais. O trabalho foi realizado em condições de campo, no norte do Estado do Paraná. A análise do gene da capa protéica (GPC) de 33 isolados, coletados de 16 clones de laranjeira 'Pêra', foi realizada com o uso da técnica polimorfismo conformacional da fita simples (SSCP). Inicialmente, os isolados foram caracterizados por meio de sintomas de caneluras observados nos clones. Em seguida, o genoma viral foi extraído e utilizado como molde para a amplificação do GCP com uso da transcrição reversa da reação em cadeia da polimerase (RTPCR). Os perfis eletroforéticos dos produtos da RTPCR foram analisados com emprego do coeficiente de Jaccard e do método UPGMA. A maioria dos clones apresentou sintomas fracos a moderados de caneluras, bem como alterações nos perfis dos isolados de CTV. Contudo, a estabilidade dos complexos protetores foi mantida, com exceção dos isolados presentes em dois dos clones analisados. Foi observada baixa variabilidade genética nos isolados durante os anos avaliados.Termos para indexação: Citrus sinensis, proteção cruzada, pré-imunização, polimorfismo conformacional da fita simples, sintomas de caneluras.
Plants of medicinal and economic importance have been studied to investigate the presence of enzyme-producing endophytic fungi. The characterization of isolates with distinct enzyme production potential may identify suitable alternatives for specialized industry. At Universidade Estadual de Maringá Laboratory of Microbial Biotechnology, approximately 500 isolates of endophytic fungi have been studied over the last decade from various host plants, including medicinally and economically important species, such as Luehea divaricata (Martius et Zuccarini), Trichilia elegans A. Juss, Sapindus saponaria L., Piper hispidum Swartz, and Saccharum spp. However, only a fraction of these endophytes have been identified and evaluated for their biotechnological application, having been initially grouped by morphological characteristics, with at least one representative of each morphogroup tested. In the current study, several fungal strains from four plants (L. divaricata, T. elegans, S. saponaria, and Saccharum spp) were identified by ribosomal DNA typing and evaluated semi-quantitatively for their enzymatic properties, including amylase, cellulase, pectinase, and protease activity. Phylogenetic analysis revealed the presence of four genera of endophytic fungi (Diaporthe, Saccharicola, Bipolaris, and Phoma) in the plants examined. According to enzymatic tests, 62% of the isolates exhibited amylase, approximately 93% cellulase, 50% pectinase, and 64% protease activity. Our results verified that the composition and abundance of endophytic fungi differed between the plants tested, and that these endophytes are a potential enzyme production resource of commercial and biotechnological value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.