Forest inventory is an important tool for estimating the production of forest stands and normally employs traditional methods for volume estimation. However, as a result of technological advancements, artificial neural networks and remote sensing have assumed a prominent role in the forestry sector since satellite images have different components that correlate with the dendrometric variables and can be used as auxiliary variables. The objective of this work was to evaluate the performance of artificial neural networks regarding the estimation of volume in a Eucalyptus sp. plantation with the use of satellite images. Pre-cut inventory data were used with ages varying between 5.3 and 6.3 years. The variables used were volume, age, 4 bands of the satellite image with a 10 m spatial resolution from Sentinell-2 satellite, ratio between the bands, NDVI, and genetic material. All processing was performed using the free software R. The evaluation criteria for the neural network were percentage of residual standard error and graphical analysis of the residues. The best neural network configuration for volume estimation presented a residual standard error of 10.63% and 12.00% for training and validation, respectively. The methodology proposed in this work proved to be efficient in estimating the volume of the stand.
As funções de afilamento são ferramentas úteis para estimar diâmetros de toras e volumes comerciais de madeira a quaisquer alturas, sendo de grande importância para os empreendimentos florestais que buscam a otimização do uso de suas florestas. Este trabalho teve como objetivo avaliar modelos de afilamento segmentados, não segmentados e modelos de forma variável para estudo do afilamento do tronco de árvores de Eucalyptus sp. Com uma base de dados proveniente de um plantio de Eucalyptus sp. localizado no sul do estado de São Paulo aos 6,3 anos de idade, os modelos de afilamento testados foram: os modelos não segmentados de Ormerod (1973) e de Schöepfer (1966), o modelo segmentado de Max e Burkhart (1976), e os modelos de forma variável de Muhairwe (1999), Methol (2001) apud Rachid et al. (2014) e de Kozak (2004). Os volumes reais foram calculados utilizando-se o método de Smalian. O modelo de Kozak (2004) obteve as melhores medidas de precisão para estimativa dos diâmetros, já a equação de Muhairwe (1999) demonstrou os melhores resultados gráficos de dispersão de resíduos para a mesma estimativa. Para a estimativa volumétrica, a equação que obteve os melhores resultados foi a proposta por Methol (2001) apud Rachid et al. (2014), com as melhores medidas de precisão e melhor comportamento gráfico, com menores tendências e dispersão mais concentrada dos resíduos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.