Summary PascalX is a Python library providing fast and accurate tools for mapping SNP-wise GWAS summary statistics. Specifically, it allows for scoring genes and annotated gene sets for enrichment signals based on data from, both, single GWAS and pairs of GWAS. The gene scores take into account the correlation pattern between SNPs. They are based on the cumulative density function of a linear combination of χ2 distributed random variables, which can be calculated either approximately or exactly to high precision. Acceleration via multi-threading and GPU is supported. The code of PascalX is fully open source and well suited as a base for method development in the GWAS enrichment test context. Availability The source code is available at https://github.com/BergmannLab/PascalX and archived under doi://10.5281/zenodo.4429922. A user manual with usage examples is available at https://bergmannlab.github.io/PascalX/. Supplementary information Supplementary material is available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.