BackgroundPsoriatic arthritis (PsA) is an inflammatory arthritis whose pathogenesis is poorly understood; it is characterized by bone erosions and new bone formation. The diagnosis of PsA is mainly clinical and diagnostic biomarkers are not yet available. The aim of this work was to clarify some aspects of the disease pathogenesis and to identify specific gene signatures in paired peripheral blood cells (PBC) and synovial biopsies of patients with PsA. Moreover, we tried to identify biomarkers that can be used in clinical practice.MethodsPBC and synovial biopsies of 10 patients with PsA were used to study gene expression using Affymetrix arrays. The expression values were validated by Q-PCR, FACS analysis and by the detection of soluble mediators.ResultsSynovial biopsies of patients showed a modulation of approximately 200 genes when compared to the biopsies of healthy donors. Among the differentially expressed genes we observed the upregulation of Th17 related genes and of type I interferon (IFN) inducible genes. FACS analysis confirmed the Th17 polarization. Moreover, the synovial trascriptome shows gene clusters (bone remodeling, angiogenesis and inflammation) involved in the pathogenesis of PsA. Interestingly 90 genes are modulated in both compartments (PBC and synovium) suggesting that signature pathways in PBC mirror those of the inflamed synovium. Finally the osteoactivin gene was upregulared in both PBC and synovial biopsies and this finding was confirmed by the detection of high levels of osteoactivin in PsA sera but not in other inflammatory arthritides.ConclusionsWe describe the first analysis of the trancriptome in paired synovial tissue and PBC of patients with PsA. This study strengthens the hypothesis that PsA is of autoimmune origin since the coactivity of IFN and Th17 pathways is typical of autoimmunity. Finally these findings have allowed the identification of a possible disease biomarker, osteoactivin, easily detectable in PsA serum.
Hypomorphic mutations allowing residual T- and B-cell development have been found in patients presenting with delayed-onset combined immune deficiency with granulomas and/or autoimmunity (CID-G/AI) and abnormalities of the peripheral T- and B-cell repertoire. To examine how hypomorphic mutations affect the earliest stages of lymphocyte development, we used CRISPR/Cas9 to generate mouse models with mutations equivalent to those found in patients with CID-G/AI. Immunological characterization showed partial development of T and B lymphocytes, with persistence of naïve cells and preserved serum immunoglobulin but impaired antibody responses and presence of autoantibodies, thereby recapitulating the phenotype seen in patients with CID-G/AI. By using high-throughput sequencing, we identified marked skewing of and gene usage in early progenitors, with a bias for productive and rearrangements after selection occurred and increased apoptosis of B-cell progenitors. Rearrangement at the locus was impaired, and polyreactive immunoglobulin M antibodies were detected. This study provides novel insights into how hypomorphic mutations alter the primary repertoire of T and B cells, setting the stage for immune dysregulation frequently seen in patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.