Male factor infertility and advanced paternal age may compromise fertilization and blastulation rates but not top quality blastocyst formation rate or the establishment of pregnancy in ICSI cycles.
Purpose To assess the effect of body mass index (BMI) on morphokinetic parameters of human embryos evaluated with timelapse technology during in vitro culture. Methods A retrospective analysis of ART cycles utilizing time-lapse technology was undertaken to assess the potential impact of maternal BMI on morphokinetic and static morphological parameters of embryo development. The cohort of patients was divided into four groups: 593 embryos from 128 underweight women in group A; 5248 embryos from 1107 normal weight women in group B; 1053 embryos from 226 overweight women in group C; and 286 embryos from 67 obese women in group D. Results After adjusting for maternal age, paternal age, and cause of infertility, time to reach five blastomeres (t5) and time to reach eight blastomeres (t8) were longer in obese women compared with normoweight women [50.84 h (46.31-55.29) vs. 49.24 h (45.69-53.22) and 57.89 h (51.60-65.94) vs. 55.66 h (50.89-62.89), adjusted p < 0.05 and adjusted p < 0.01, respectively]. In addition, t8 was also delayed in overweight compared with normoweight women [56.72 h (51.83-63.92) vs. 55.66 h (50.89-62.89), adjusted p < 0.01]. No significant differences were observed among groups with regard to embryo morphology and pregnancy rate. Miscarriage rate was higher in underweight compared with normoweight women (OR = 2.1; 95% CI 1.12-3.95, adjusted p < 0.05). Conclusion Assessment with time-lapse technology but not by classical static morphology evidences that maternal BMI affects embryo development. Maternal obesity and overweight are associated with slower embryo development.
Given the importance of embryo developmental competence assessment in reproductive medicine and biology, the aim of this study was to compare the performance of fertilization and cleavage morphokinetics with embryo morphology to predict post-ICSI live birth. Data from embryos cultured in a time-lapse microscopy (TLM) incubator and with known live birth outcomes (LB: embryos achieving live birth, n = 168; NLB: embryos not achieving live birth, n = 1633) were used to generate receiver operating characteristic (ROC) curves based on morphokinetic or morphological scores, and the respective areas under the curve (AUC) were compared. The association between live birth and 12 combinations of four morphokinetic quality degrees (A–D) with three morphological quality degrees (A–C) was assessed using multivariate analysis. Morphokinetic parameters from tPNa to t8 were reached earlier in LB compared with NLB embryos. The ROC curve analysis indicated that morphokinetic information is more accurate than conventional morphology to predict live birth [AUC = 0.64 (95% CI 0.58–0.70) versus AUC = 0.58 (95% CI 0.51–0.65)]. The multivariate analysis was in line with AUCs, revealing that embryos with poor morphokinetics, independently of their morphology, provide lower live birth rates (P < 0.001). A considerable percentage of embryos with top morphology presented poor morphokinetics (20.10%), accompanied by a severely reduced live birth rate in comparison with embryos with top morphology and morphokinetics (P < 0.001). In conclusion, TLM-derived early morphokinetic parameters were more predictive of live-birth achievement following ICSI than conventional morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.